Tropical Dynamic Programming and Entropic Regularization of the Nested Distance

(Duy-Nghi) Benoît Tran October 07th 2021

FGV EMAp

Outline

 Tropical Dynamic Programming with M. AKIAN (Ecole Polytechnique) and J-P. CHANCELIER (Ecole des Ponts ParisTech)

2. Entropic Regularization of the Nested Distance with Z. Qu (Hong Kong University)

1. Lipschitz Multistage Stochastic optimization Problems

2. Tropical Dynamic Programming (TDP)

3. Convergence result of TDP and numerical illustration

Multistage Stochastic optimization Problem

$$\begin{split} \min_{(\mathsf{X},\mathsf{U})} \mathbb{E} \left[\sum_{t=0}^{T-1} c_t^{\mathsf{W}_{t+1}} \left(\mathsf{X}_t, \mathsf{U}_t \right) + \psi \left(\mathsf{X}_T \right) \right] \\ \text{s.t. } \mathsf{X}_0 &= \mathsf{X}_0 \text{ given}, \forall t \in \llbracket 0, T-1 \rrbracket \\ \mathsf{X}_{t+1} &= f_t^{\mathsf{W}_{t+1}} \left(\mathsf{X}_t, \mathsf{U}_t \right) \\ \sigma \left(\mathsf{U}_t \right) \subset \sigma \left(\mathsf{X}_0, \mathsf{W}_1, \dots, \mathsf{W}_{t+1} \right) \quad (\mathsf{Hazard-Decision}) \end{split}$$

Assumption (Finite support independent noises) The sequence $(W_t)_{t \in [\![1,T]\!]}$ is made of independent random variables each with finite support

MSP can be solved by Dynamic Programming

MSP can be solved by Dynamic Programming

• Pointwise Bellman operator

for all $w \in \mathrm{supp}\,(\mathsf{W}_{\mathsf{t+1}})$ and $\phi:\mathbb{X} o \overline{\mathbb{R}}$

$$\mathcal{B}_{t}^{w}(\phi): x \in \mathbb{X} \mapsto \min_{u} \left(C_{t}^{w}(x, u) + \phi(f_{t}^{w}(x, u)) \right) \in \overline{\mathbb{R}}$$

MSP can be solved by Dynamic Programming

• Pointwise Bellman operator

for all $w \in \text{supp}(W_{t+1})$ and $\phi : \mathbb{X} \to \overline{\mathbb{R}}$ $\mathcal{B}_t^w(\phi) : x \in \mathbb{X} \mapsto \min_u \left(C_t^w(x, u) + \phi(f_t^w(x, u)) \right) \in \overline{\mathbb{R}}$

• (Average) Bellman operator

$$\mathfrak{B}_{t}(\phi): x \in \mathbb{X} \mapsto \mathbb{E}_{W_{t+1}}\left[\mathcal{B}_{t}^{W_{t+1}}(\phi)(x)\right] \in \overline{\mathbb{R}}$$

MSP can be solved by Dynamic Programming

• Pointwise Bellman operator

for all $w \in \text{supp}(W_{t+1})$ and $\phi : \mathbb{X} \to \overline{\mathbb{R}}$ $\mathcal{B}_t^w(\phi) : x \in \mathbb{X} \mapsto \min_u \left(C_t^w(x, u) + \phi(f_t^w(x, u)) \right) \in \overline{\mathbb{R}}$

• (Average) Bellman operator

$$\mathfrak{B}_{t}\left(\phi\right): x \in \mathbb{X} \mapsto \mathbb{E}_{W_{t+1}}\left[\mathcal{B}_{t}^{W_{t+1}}\left(\phi\right)\left(x\right)\right] \in \overline{\mathbb{R}}$$

Dynamic Programming Equations

$$V_T = \psi$$
 and $\forall t \in \llbracket 0, T - 1 \rrbracket$, $V_t = \mathfrak{B}_t (V_{t+1})$

MSP can be solved by Dynamic Programming

• Pointwise Bellman operator

for all $w \in \text{supp}(W_{t+1})$ and $\phi : \mathbb{X} \to \overline{\mathbb{R}}$ $\mathcal{B}_{t}^{w}(\phi) : x \in \mathbb{X} \mapsto \min_{u} \left(C_{t}^{w}(x, u) + \phi(f_{t}^{w}(x, u)) \right) \in \overline{\mathbb{R}}$

• (Average) Bellman operator

$$\mathfrak{B}_{t}\left(\phi\right): x \in \mathbb{X} \mapsto \mathbb{E}_{W_{t+1}}\left[\mathcal{B}_{t}^{W_{t+1}}\left(\phi\right)\left(x\right)\right] \in \overline{\mathbb{R}}$$

• Dynamic Programming Equations

$$V_T = \psi$$
 and $\forall t \in \llbracket 0, T - 1 \rrbracket, V_t = \mathfrak{B}_t (V_{t+1})$

- V_t is called the value function at time $t \in [0, T]$
- The value of MSP is equal to $V_0(x_0)$

Build an algorithm that simultaneously generates upper and lower approximations of V_t as min-plus linear and max-plus linear combinations of basic functions

For all $t \in [0, T]$, construct increasing sequences of basic functions $\left(\frac{F_t^k}{t}\right)_{k \in \mathbb{N}}$ and $\left(\overline{F}_t^k\right)_{k \in \mathbb{N}}$

$$\begin{cases} \underline{V}_t^k = \sup_{\underline{\phi} \in \underline{F}_t^k} \underline{\phi} \\ \overline{V}_t^k = \inf_{\overline{\phi} \in \overline{F}_t^k} \overline{\phi} \end{cases}$$

Build an algorithm that simultaneously generates upper and lower approximations of V_t as min-plus linear and max-plus linear combinations of basic functions

- Generalizes the Min-plus algorithm for deterministic control problems (McEneaney 2007, Qu 2014) giving upper approximations as infima of quadratics
- and the Stochastic Dual Dynamic Programming (SDDP) algorithm (Pereira and Pinto 1991, Shapiro 2011, ...) giving lower approximations as suprema of affine cuts

Lipschitz Multistage Stochastic optimization Problems

Assumption (Lipschitz dynamic, costs and constraints) For every time t < T and $w \in supp (W_{t+1})$,

- dynamics f_t^w are Lipschitz continuous
- + cost c^w_t are Lipschitz continuous on $\mathrm{dom}\;c^w_t$
- constraint set-valued mapping \mathcal{U}_t^w is Lipschitz continuous on $X_t,$

$$d_{\mathcal{H}}\left(\mathcal{U}_{t}^{w}\left(x_{1}
ight),\mathcal{U}_{t}^{w}\left(x_{2}
ight)
ight)\leq L_{\mathcal{U}_{t}^{w}}\|x_{1}-x_{2}\|$$

Proposition (Lipschitz MSP implies regularity of \mathfrak{B}_t)

If $V : \mathbb{X} \to \mathbb{R}$ L_{t+1} -Lipschitz on X_{t+1} , then $\mathfrak{B}_t(V)$ is L_t -Lipschitz on X_t for some constant $L_t > 0$ which only depends on the data of the MSP problem and L_{t+1} . For each noise $w \in \text{supp}(W_{t+1}), t \in [0, T-1]]$, define the constraint set-valued mapping $\mathcal{U}_t^w : \mathbb{X} \Rightarrow \mathbb{U}$

 $\mathcal{U}_{t}^{w}(x) := \{u \in \mathbb{U} \mid c_{t}^{w}(x, u) < +\infty \text{ and } f_{t}^{w}(x, u) \in X_{t+1}\}.^{1}$

Assumption (Recourse assumption)

The set-valued mapping \mathcal{U}^{w}_{t} is non-empty compact valued

Proposition (Known domains of V_t **)** Under the recourse assumption, dom $V_t = X_t$

 ${}^{1}\forall w \in \operatorname{supp}\left(W_{t+1}\right), X_{t}^{w} := \pi_{\mathbb{X}}\left(\operatorname{dom}\, c_{t}^{w}\right), \text{and} \, X_{t} := \cap_{w \in \operatorname{supp}\left(W_{t+1}\right)} X_{t}^{w}.$

Input: sequence $(x_t)_{t \in [0,T]}$ of trial points, sequence $(F_t)_{t \in [0,T]}$ of sets of basic functions

Output: sequence $(\phi_t)_{t \in [0,T]}$ of basic functions

Input: sequence $(x_t)_{t \in [0,T]}$ of trial points, sequence $(F_t)_{t \in [0,T]}$ of sets of basic functions

Output: sequence $(\phi_t)_{t \in [0,T]}$ of basic functions

<u>Case t = T</u>

Tightness Assumption (local property)

 $\phi_T(x_T) = V_T(x_T)$

Validity Assumption (global property)

 $\phi_T \ge V_T$ (Min-plus lin. combinations case)

 $\phi_T \leq V_T$ (Max-plus lin. combinations case)

Input: sequence $(x_t)_{t \in [0,T]}$ of trial points, sequence $(F_t)_{t \in [0,T]}$ of sets of basic functions

Output: sequence $(\phi_t)_{t \in [0,T]}$ of basic functions **Notation:** $\mathcal{V}_{F_{t+1}}$ the **sup** or **inf** of basic functions in F_{t+1}

Input: sequence $(x_t)_{t \in [0,T]}$ of trial points, sequence $(F_t)_{t \in [0,T]}$ of sets of basic functions

Output: sequence $(\phi_t)_{t \in [0,T]}$ of basic functions **Notation:** $\mathcal{V}_{F_{t+1}}$ the **sup** or **inf** of basic functions in F_{t+1}

7/28

Input: sequence $(x_t)_{t \in [0,T]}$ of trial points, sequence $(F_t)_{t \in [0,T]}$ of sets of basic functions

Output: sequence $(\phi_t)_{t \in [0,T]}$ of basic functions **Notation:** $\mathcal{V}_{F_{t+1}}$ the **sup** or **inf** of basic functions in F_{t+1}

Input: sequence $(x_t)_{t \in [0,T]}$ of trial points, sequence $(F_t)_{t \in [0,T]}$ of sets of basic functions

Output: sequence $(\phi_t)_{t \in [0,T]}$ of basic functions

<u>Case t < T</u> Tightness Assumption (local property)

$$\phi_{t}\left(x_{t}\right)=\mathfrak{B}_{t}\left(\mathcal{V}_{F_{t+1}}\right)\left(x_{t}\right)$$

Validity Assumption (global property)

 $\phi_t \geq \mathfrak{B}_t \left(\mathcal{V}_{F_{t+1}} \right)$ (Min-plus lin. combinations case)

 $\phi_t \leq \mathfrak{B}_t \left(\mathcal{V}_{F_{t+1}} \right)$ (Max-plus lin. combinations case)

Input: two sequences of functions $\underline{V}_0, \ldots, \underline{V}_T$ and $\overline{V}_0, \ldots, \overline{V}_T$

Output: Problem-child trajectory, states (x_0^*, \ldots, x_T^*) .

Initial state x_0^* is given, then for t < T

Input: two sequences of functions $\underline{V}_0, \ldots, \underline{V}_T$ and $\overline{V}_0, \ldots, \overline{V}_T$ Output: Problem-child trajectory, states (x_0^*, \ldots, x_T^*) . Initial state x_0^* is given, then for t < T

1. For all $w \in \text{supp}(W_{t+1})$, compute optimal control at x_t^*

$$u_t^{\mathsf{w}} \in \operatorname*{arg\,min}_{u \in U} \left(c_t^{\mathsf{w}} \left(x_t^*, u \right) + \underline{V}_{t+1} \left(f_t^{\mathsf{w}} \left(x_t^*, u \right) \right) \right)$$

Input: two sequences of functions $\underline{V}_0, \ldots, \underline{V}_T$ and $\overline{V}_0, \ldots, \overline{V}_T$ Output: Problem-child trajectory, states (x_0^*, \ldots, x_T^*) . Initial state x_0^* is given, then for t < T

1. For all $w \in \operatorname{supp} (W_{t+1})$, compute optimal control at x_t^*

$$u_{t}^{w} \in \operatorname*{arg\,min}_{u \in U} \left(c_{t}^{w} \left(x_{t}^{*}, u \right) + \underline{V}_{t+1} (f_{t}^{w} \left(x_{t}^{*}, u \right) \right) \right)$$

2. Compute "the worst" noise

$$W^{*} \in \arg \max_{W \in W_{t+1}} \left(\overline{V}_{t+1} - \underline{V}_{t+1} \right) \left(f_{t}^{W} \left(X_{t}^{*}, U_{t}^{W} \right) \right)$$

Input: two sequences of functions $\underline{V}_0, \ldots, \underline{V}_T$ and $\overline{V}_0, \ldots, \overline{V}_T$ **Output:** Problem-child trajectory, states (x_0^*, \ldots, x_T^*) . Initial state x_0^* is given, then **for** t < T

1. For all $w \in \operatorname{supp} (W_{t+1})$, compute optimal control at x_t^*

$$u_{t}^{\mathsf{W}} \in \operatorname*{arg\,min}_{u \in U} \left(c_{t}^{\mathsf{W}} \left(x_{t}^{*}, u \right) + \underline{\mathsf{V}}_{t+1} (f_{t}^{\mathsf{W}} \left(x_{t}^{*}, u \right) \right) \right)$$

- 2. Compute "the worst" noise
- $$\begin{split} & w^* \in \arg \max_{w \in W_{t+1}} \left(\overline{V}_{t+1} \underline{V}_{t+1} \right) \left(f_t^w \left(x_t^*, u_t^w \right) \right) \\ & 3. \ \text{Set} \ x_{t+1}^* = f_t^{w^*} \left(x_t^*, u_t^{w^*} \right) \end{split}$$

Input: two sequences of functions $\underline{V}_0, \ldots, \underline{V}_T$ and $\overline{V}_0, \ldots, \overline{V}_T$ **Output:** Problem-child trajectory, states (x_0^*, \ldots, x_T^*) . Initial state x_0^* is given, then **for** t < T

1. For all $w \in \operatorname{supp}(W_{t+1})$, compute optimal control at x_t^*

$$u_{t}^{w} \in \underset{u \in U}{\operatorname{arg\,min}} \left(c_{t}^{w} \left(x_{t}^{*}, u \right) + \underline{V}_{t+1} (f_{t}^{w} \left(x_{t}^{*}, u \right) \right) \right)$$

2. Compute "the worst" noise

$$W^* \in \arg\max_{w \in W_{t+1}} \left(\overline{V}_{t+1} - \underline{V}_{t+1} \right) \left(f_t^w \left(x_t^*, u_t^w \right) \right)$$

8. Set $x_{t+1}^* = f_t^{W^*} \left(x_t^*, u_t^{W^*} \right)$

Interpretation

Problem child trajectory = "Worst" optimal trajectory of the lower approximations

1. Lipschitz Multistage Stochastic optimization Problems

2. Tropical Dynamic Programming (TDP)

3. Convergence result of TDP and numerical illustration

Algorithm 1 Tropical Dynamic Programming (TDP)

Input: Selection functions and $(W_t)_{t \in [\![1,T]\!]}$ independent r.v. with finite support.

Output: Sequence of sets $(\overline{F}_t^k)_{k \in \mathbb{N}}, (\underline{F}_t^k)_{k \in \mathbb{N}}$

Algorithm 2 Tropical Dynamic Programming (TDP)

Input: Selection functions and $(W_t)_{t \in [\![1,T]\!]}$ independent r.v. with finite support.

Output: Sequence of sets $(\overline{F}_t^k)_{k \in \mathbb{N}}, (\underline{F}_t^k)_{k \in \mathbb{N}}$

1: For every $t \in \llbracket 0, T \rrbracket$, $\overline{F}_t^0 := \emptyset$ and $\underline{F}_t^0 := \emptyset$

Algorithm 3 Tropical Dynamic Programming (TDP)

Input: Selection functions and $(W_t)_{t \in [\![1,T]\!]}$ independent r.v. with finite support.

Output: Sequence of sets $\left(\overline{F}_{t}^{k}\right)_{k \in \mathbb{N}}, \left(\underline{F}_{t}^{k}\right)_{k \in \mathbb{N}}$

- 1: For every $t \in \llbracket 0, T \rrbracket$, $\overline{F}_t^0 := \emptyset$ and $\underline{F}_t^0 := \emptyset$
- 2: **for** $k \ge 0$ **do**
- 3: Forward. Compute Problem-child trajectory $(x_t^k)_{t \in [0,T]}$ using $\overline{V}_t^k = \inf_{\overline{\phi} \in \overline{F}_t^k} \overline{\phi}$ and $\underline{V}_t^k = \sup_{\underline{\phi} \in \underline{F}_t^k} \underline{\phi}$

Algorithm 4 Tropical Dynamic Programming (TDP)

Input: Selection functions and $(W_t)_{t \in [\![1,T]\!]}$ independent r.v. with finite support.

Output: Sequence of sets $\left(\overline{F}_{t}^{k}\right)_{b \in \mathbb{N}}, \left(\underline{F}_{t}^{k}\right)_{b \in \mathbb{N}}$

- 1: For every $t \in \llbracket 0, T \rrbracket$, $\overline{F}_t^0 := \emptyset$ and $\underline{F}_t^0 := \emptyset$
- 2: **for** $k \ge 0$ **do**
- 3: Forward. Compute Problem-child trajectory (x^k_t)_{t∈[0,T]} using V^k_t = inf_{φ∈F^k_t} φ and V^k_t = sup_{φ∈F^k_t} φ
 4: Backward. Compute new basic functions (φ_t)_{t∈[0,T]} and (φ_t)_{t∈[0,T]} and update F^{k+1}_{t∈[0,T]} = F^k_t ∪ {φ_t} and E^{k+1}_t := E^k_t ∪ {φ_t}, t ∈ [0,T]
 5: end for

1. Lipschitz Multistage Stochastic optimization Problems

2. Tropical Dynamic Programming (TDP)

3. Convergence result of TDP and numerical illustration

Under finite independent noises, Lipschitz data and recourse assumptions we have

Existence of an approximating limit The sequence of functions $(\underline{V}_t^k)_{k\in\mathbb{N}}$ (resp. $(\overline{V}_t^k)_{k\in\mathbb{N}}$) generated by TDP converges uniformly on every compact set included in the domain of V_t to a function \underline{V}_t^* (resp. \overline{V}_t^*).

Some features of TDP

Under finite independent noises, Lipschitz data and recourse assumptions we have

Existence of an approximating limit The sequence of functions $\left(\underline{V}_t^k\right)_{k\in\mathbb{N}}$ (resp. $\left(\overline{V}_t^k\right)_{k\in\mathbb{N}}$) generated by TDP converges uniformly on every compact set included in the domain of V_t to a function \underline{V}_t^* (resp. \overline{V}_t^*).

Some features of TDP

• No need to discretize the state space

Under finite independent noises, Lipschitz data and recourse assumptions we have

Existence of an approximating limit The sequence of functions $\left(\underline{V}_t^k\right)_{k\in\mathbb{N}}$ (resp. $\left(\overline{V}_t^k\right)_{k\in\mathbb{N}}$) generated by TDP converges uniformly on every compact set included in the domain of V_t to a function \underline{V}_t^* (resp. \overline{V}_t^*).

Some features of TDP

- No need to discretize the state space
- $\cdot \left(\underline{V}_{t}^{k}\right)_{k}$ and $\left(\overline{V}_{t}^{k}\right)_{k}$ are monotonic

Under finite independent noises, Lipschitz data and recourse assumptions we have

Existence of an approximating limit The sequence of functions $\left(\underline{V}_t^k\right)_{k\in\mathbb{N}}$ (resp. $\left(\overline{V}_t^k\right)_{k\in\mathbb{N}}$) generated by TDP converges uniformly on every compact set included in the domain of V_t to a function \underline{V}_t^* (resp. \overline{V}_t^*).

Some features of TDP

- No need to discretize the state space
- $\cdot \left(\underline{V}_{t}^{k}\right)_{k}$ and $\left(\overline{V}_{t}^{k}\right)_{k}$ are monotonic
- \underline{V}_t^* and \overline{V}_t^* are close to V_t on "interesting points", but may be far from V_t elsewhere.

Under finite independent noises, Lipschitz data and recourse assumptions we have

Convergence of TDP [Akian, Chancelier, T., 2020] Denote by $(x_t^k)_{0 \le t \le T}$ the *k*-th Problem-child trajectory. For every accumulation point x_t^* of $(x_t^k)_{k \in \mathbb{N}}$, we have

$$\overline{\mathbf{V}}_{t}^{k}\left(x_{t}^{k}\right) - \underline{\mathbf{V}}_{t}^{k}\left(x_{t}^{k}\right) \underset{k \to +\infty}{\longrightarrow} 0 \quad \text{and} \quad \overline{\mathbf{V}}_{t}^{*}\left(x_{t}^{*}\right) = V_{t}\left(x_{t}^{*}\right) = \underline{\mathbf{V}}_{t}^{*}\left(x_{t}^{*}\right)$$

This result generalizes the convergence of SDDP à la [Philpott and al. (2013)] and [Baucke and al. (2018)] seen as a specific instance of TDP for the linear-polyhedral framework

Idea of the proof, details in [Akian, Chancelier, T., 2020]

• $\left(\underline{V}_{t}^{k}\right)_{k}$ (resp. $\left(\overline{V}_{t}^{k}\right)_{k}$) converges uniformly to \underline{V}_{t}^{*} (resp. \overline{V}_{t}^{*}) on the domain of V_{t} by Arzela-Ascoli theorem
- $\left(\underline{V}_{t}^{k}\right)_{k}$ (resp. $\left(\overline{V}_{t}^{k}\right)_{k}$) converges uniformly to \underline{V}_{t}^{*} (resp. \overline{V}_{t}^{*}) on the domain of V_{t} by Arzela-Ascoli theorem
- Exploiting monotonicity of the approximations and that each operator \mathcal{B}_t^w is order preserving

$$0 \leq \overline{V}_{t}^{k+1}\left(x_{t}^{k}\right) - \underline{V}_{t}^{k+1}\left(x_{t}^{k}\right)$$
$$\leq \sum_{w \in \operatorname{supp}(W_{t+1})} \mathbb{P}\left[W_{t+1} = w\right]\left[\left(\overline{V}_{t+1}^{k} - \underline{V}_{t+1}^{k}\right)\left(f_{t}^{w}\left(x_{t}^{k}, u_{t}^{k}\left(w\right)\right)\right)\right]$$

- $\left(\underline{V}_{t}^{k}\right)_{k}$ (resp. $\left(\overline{V}_{t}^{k}\right)_{k}$) converges uniformly to \underline{V}_{t}^{*} (resp. \overline{V}_{t}^{*}) on the domain of V_{t} by Arzela-Ascoli theorem
- Exploiting monotonicity of the approximations and that each operator \mathcal{B}_t^w is order preserving

$$0 \leq \overline{V}_{t}^{k+1}\left(x_{t}^{k}\right) - \underline{V}_{t}^{k+1}\left(x_{t}^{k}\right)$$
$$\leq \sum_{w \in \operatorname{supp}(W_{t+1})} \mathbb{P}\left[W_{t+1} = w\right]\left[\left(\overline{V}_{t+1}^{k} - \underline{V}_{t+1}^{k}\right)\left(f_{t}^{w}\left(x_{t}^{k}, u_{t}^{k}\left(w\right)\right)\right)\right]$$

• PC-trajectory is the "worst" optimal trajectory

$$0 \leq \overline{V}_{t}^{k+1}\left(x_{t}^{k}\right) - \underline{V}_{t}^{k+1}\left(x_{t}^{k}\right) \leq \overline{V}_{t+1}^{k}\left(x_{t+1}^{k}\right) - \underline{V}_{t+1}^{k}\left(x_{t+1}^{k}\right)$$

- $\left(\underline{V}_{t}^{k}\right)_{k}$ (resp. $\left(\overline{V}_{t}^{k}\right)_{k}$) converges uniformly to \underline{V}_{t}^{*} (resp. \overline{V}_{t}^{*}) on the domain of V_{t} by Arzela-Ascoli theorem
- Exploiting monotonicity of the approximations and that each operator \mathcal{B}_t^w is order preserving

$$0 \leq \overline{V}_{t}^{k+1}\left(x_{t}^{k}\right) - \underline{V}_{t}^{k+1}\left(x_{t}^{k}\right)$$
$$\leq \sum_{w \in \operatorname{supp}(W_{t+1})} \mathbb{P}\left[W_{t+1} = w\right] \left[\left(\overline{V}_{t+1}^{k} - \underline{V}_{t+1}^{k}\right) \left(f_{t}^{w}\left(x_{t}^{k}, u_{t}^{k}\left(w\right)\right)\right) \right]$$

• PC-trajectory is the "worst" optimal trajectory

$$0 \leq \overline{\mathbf{V}}_{t}^{k+1}\left(\boldsymbol{x}_{t}^{k}\right) - \underline{\mathbf{V}}_{t}^{k+1}\left(\boldsymbol{x}_{t}^{k}\right) \leq \overline{\mathbf{V}}_{t+1}^{k}\left(\boldsymbol{x}_{t+1}^{k}\right) - \underline{\mathbf{V}}_{t+1}^{k}\left(\boldsymbol{x}_{t+1}^{k}\right)$$

• Taking the limit in *k*

$$0 \leq \overline{V}_{t}^{*}\left(x_{t}^{*}\right) - \underline{V}_{t}^{*}\left(x_{t}^{*}\right) \leq \overline{V}_{t+1}^{*}\left(x_{t+1}^{*}\right) - \underline{V}_{t+1}^{*}\left(x_{t+1}^{*}\right)$$

- $\left(\underline{V}_{t}^{k}\right)_{k}$ (resp. $\left(\overline{V}_{t}^{k}\right)_{k}$) converges uniformly to \underline{V}_{t}^{*} (resp. \overline{V}_{t}^{*}) on the domain of V_{t} by Arzela-Ascoli theorem
- Exploiting monotonicity of the approximations and that each operator \mathcal{B}_t^w is order preserving

$$0 \leq \overline{V}_{t}^{k+1}\left(x_{t}^{k}\right) - \underline{V}_{t}^{k+1}\left(x_{t}^{k}\right)$$
$$\leq \sum_{w \in \operatorname{supp}(W_{t+1})} \mathbb{P}\left[W_{t+1} = w\right] \left[\left(\overline{V}_{t+1}^{k} - \underline{V}_{t+1}^{k}\right) \left(f_{t}^{w}\left(x_{t}^{k}, u_{t}^{k}\left(w\right)\right)\right) \right]$$

• PC-trajectory is the "worst" optimal trajectory

$$0 \leq \overline{\mathbf{V}}_{t}^{k+1}\left(\mathbf{x}_{t}^{k}\right) - \underline{\mathbf{V}}_{t}^{k+1}\left(\mathbf{x}_{t}^{k}\right) \leq \overline{\mathbf{V}}_{t+1}^{k}\left(\mathbf{x}_{t+1}^{k}\right) - \underline{\mathbf{V}}_{t+1}^{k}\left(\mathbf{x}_{t+1}^{k}\right)$$

• Taking the limit in *k*

$$0 \leq \overline{V}_{t}^{*}\left(X_{t}^{*}\right) - \underline{V}_{t}^{*}\left(X_{t}^{*}\right) \leq \overline{V}_{t+1}^{*}\left(X_{t+1}^{*}\right) - \underline{V}_{t+1}^{*}\left(X_{t+1}^{*}\right)$$

 \cdot Conclude by backward recursion on t

Linear dynamics $(x, u) \mapsto f_t^w(x, u)$

Polyhedral costs $(x, u) \mapsto c_t^w(x, u)$ (convex polyhedral epigraph)

Proposition (Linear-polyhedral MSP are Lipschitz MSP) *Linear-polyhedral MSP are Lipschitz MSP*

Proof.

The constraint mapping \mathcal{U}_t^w has a convex polyhedral graph thus (*e.g.* [Rockafellar-Wets, Variational Analysis]) is Lipschitz with an explicit constant

U-SDDP on a linear-polyhedral example

U-SDDP on a linear-polyhedral example

U-SDDP on a linear-polyhedral example

14/28

V-SDDP on a linear-polyhedral example

V-SDDP on a linear-polyhedral example

V-SDDP on a linear-polyhedral example

15/28

Complexity of TDP

• G. Lan obtained complexity of SDDP (and EDDP) in 2020 Precision of $T\epsilon$ archived after at most $T(\frac{D}{\epsilon} + 1)^N$ iterations D diameter state spaces N dimension state/control (decision) space

Complexity of TDP

- G. Lan obtained complexity of SDDP (and EDDP) in 2020 Precision of $T\epsilon$ archived after at most $T(\frac{D}{\epsilon} + 1)^N$ iterations D diameter state spaces N dimension state/control (decision) space
- Straightforward modifications of Lan's proof yield the same complexity result for TDP

Complexity of TDP

- G. Lan obtained complexity of SDDP (and EDDP) in 2020 Precision of $T\epsilon$ archived after at most $T(\frac{D}{\epsilon} + 1)^N$ iterations D diameter state spaces N dimension state/control (decision) space
- Straightforward modifications of Lan's proof yield the same complexity result for TDP
- For TDP, overall complexity depends on the complexity of computing basic functions

Selection mapping	Computational difficulty
SDDP	$\operatorname{Card}(W_{t+1})$ LPs
U	$\operatorname{Card}(W_{t+1}) \cdot \operatorname{Card}(F) QPs$
V	one LP

• Monotonic approximations
$$\left(\overline{V}_{t}^{k}\right)_{k}$$
 and $\left(\underline{V}_{t}^{k}\right)_{k}$ of V_{t}

- Monotonic approximations $(\overline{V}_t^k)_k$ and $(\underline{V}_t^k)_k$ of V_t • Min-plus linear or Max-plus linear combinations of basic
- Min-plus linear or Max-plus linear combinations of basic functions

- Monotonic approximations $\left(\overline{V}_{t}^{k}\right)_{k}$ and $\left(\underline{V}_{t}^{k}\right)_{k}$ of V_{t}
- Min-plus linear or Max-plus linear combinations of basic functions
- Tight and Valid basic functions

- Monotonic approximations $\left(\overline{V}_{t}^{k}\right)_{k}$ and $\left(\underline{V}_{t}^{k}\right)_{k}$ of V_{t}
- Min-plus linear or Max-plus linear combinations of basic functions
- Tight and Valid basic functions
- Approximations refined along the Problem-child trajectory without discretizing state space

- Monotonic approximations $\left(\overline{V}_{t}^{k}\right)_{k}$ and $\left(\underline{V}_{t}^{k}\right)_{k}$ of V_{t}
- Min-plus linear or Max-plus linear combinations of basic functions
- Tight and Valid basic functions
- Approximations refined along the Problem-child trajectory without discretizing state space
- Gap between upper and lower approximation vanishes along the Problem-child trajectory

- Monotonic approximations $\left(\overline{V}_{t}^{k}\right)_{k}$ and $\left(\underline{V}_{t}^{k}\right)_{k}$ of V_{t}
- Min-plus linear or Max-plus linear combinations of basic functions
- Tight and Valid basic functions
- Approximations refined along the Problem-child trajectory without discretizing state space
- Gap between upper and lower approximation vanishes along the Problem-child trajectory
- Generalizes [Philpott and al. (2013)] and [Baucke and al. (2018)] for a variant of SDDP

- Monotonic approximations $\left(\overline{V}_{t}^{k}\right)_{k}$ and $\left(\underline{V}_{t}^{k}\right)_{k}$ of V_{t}
- Min-plus linear or Max-plus linear combinations of basic functions
- Tight and Valid basic functions
- Approximations refined along the Problem-child trajectory without discretizing state space
- Gap between upper and lower approximation vanishes along the Problem-child trajectory
- Generalizes [Philpott and al. (2013)] and [Baucke and al. (2018)] for a variant of SDDP
- Additional results (deterministic case) in [Akian, Chancelier, T. (2018)]

- Monotonic approximations $\left(\overline{V}_{t}^{k}\right)_{k}$ and $\left(\underline{V}_{t}^{k}\right)_{k}$ of V_{t}
- Min-plus linear or Max-plus linear combinations of basic functions
- Tight and Valid basic functions
- Approximations refined along the Problem-child trajectory without discretizing state space
- Gap between upper and lower approximation vanishes along the Problem-child trajectory
- Generalizes [Philpott and al. (2013)] and [Baucke and al. (2018)] for a variant of SDDP
- Additional results (deterministic case) in [Akian, Chancelier, T. (2018)]
- Currently working with Vincent Guigues on regularization techniques for SDDP

 Tropical Dynamic Programming with M. AKIAN (Ecole Polytechnique) and J-P. CHANCELIER (Ecole des Ponts ParisTech)

2. Entropic Regularization of the Nested Distance with Z. Qu (Hong Kong University)

4. From the Wasserstein distance to the Nested Distance

5. Optimal Transport and Regularized Optimal Transport

6. Sinkhorn's Algorithm

7. Nested Distance and Entropic Nested Distance

A distance between scenario trees

Figure 3: Two scenario trees X and Y, Nested Distance is $ND_2(X, Y) = 1.009$ its entropic regularization is $END_2(X, Y) = 1.011$.

Scenario tree A stochastic process $(X_t)_{t \in [\![1,T]\!]}$ is a scenario tree if it is also discrete and finite in space

From the Wasserstein distance to the Nested Distance (1/2)

Buying an object with random prices at the best average price.

$$V(Z) = \min_{\mathbf{u}} \left\{ \mathbb{E} \left[\sum_{t=0}^{2} Z_t \mathbf{u}_t \right] \mid \begin{array}{c} \mathbf{u}_t \in \{0, 1\}, \\ \mathbf{u}_t \text{ is } \mathcal{F}_t \text{ -measurable,} \\ \sum_{t=0}^{T} \mathbf{u}_t = 1, \end{array} \right\}$$

Proximity in Wasserstein metric Arbitrarily large gap in values

$$W(X,Y) = 2\epsilon \qquad |V(X) - V(Y)| = \frac{A - \epsilon}{2} \qquad {}_{19/28}$$

Wasserstein distance is not suited for MSP

For every L > 0, there exists a initial price A s.t.

$$|\underbrace{v(X) - v(Y)}_{\frac{A-\epsilon}{2}}| \leq L \cdot \underbrace{W(X,Y)}_{2\epsilon}$$

Wasserstein distance is not suited for MSP

For every L > 0, there exists a initial price A s.t.

$$|\underbrace{v(X) - v(Y)}_{\frac{A-\epsilon}{2}}| \leq L \cdot \underbrace{W(X,Y)}_{2\epsilon}$$

The Nested Distance is suited for MSP

There exists L > 0 s.t. for every initial price A

$$|v(X) - v(Y)| \le L \cdot \underbrace{\operatorname{ND}(X, Y)}_{=A+\epsilon}$$
 (Pflug and Pichler, 2012)

4. From the Wasserstein distance to the Nested Distance

5. Optimal Transport and Regularized Optimal Transport

6. Sinkhorn's Algorithm

7. Nested Distance and Entropic Nested Distance

Optimal Transport and Regularized Optimal Transport (1/2)

Optimal Transport

$$OT(p,q;c) = \min_{\pi \in \mathbb{R}^{n \times m}_+} \sum_{\substack{1 \le i \le n \\ 1 \le j \le m}} c_{ij} \pi_{ij} \text{ s.t. } \pi \mathbf{1}_m = p, \pi^T \mathbf{1}_n = q$$

 π transport plan if it satisfies the mass constraints

$$\begin{cases} \pi \mathbf{1}_m = p \\ \pi^T \mathbf{1}_n = q \end{cases}$$

Optimal Transport and Regularized Optimal Transport (1/2)

Optimal Transport

$$OT(p,q;c) = \min_{\pi \in \mathbb{R}^{n \times m}_+} \sum_{\substack{1 \le i \le n \\ 1 \le j \le m}} c_{ij} \pi_{ij} \text{ s.t. } \pi \mathbf{1}_m = p, \pi^T \mathbf{1}_n = q$$

 π transport plan if it satisfies the mass constraints

$$\begin{cases} \pi \mathbf{1}_m = p \\ \pi^T \mathbf{1}_n = q \end{cases}$$

Discrete entropy of $\pi \in \mathbb{R}^{n \times m}_+$, $H(\pi) = -\sum_{i,j} \pi_{ij} \log (\pi_{ij})$

Optimal Transport and Regularized Optimal Transport (1/2)

Optimal Transport

$$OT(p,q;c) = \min_{\pi \in \mathbb{R}^{n \times m}_+} \sum_{\substack{1 \le i \le n \\ 1 \le j \le m}} c_{ij} \pi_{ij} \text{ s.t. } \pi \mathbf{1}_m = p, \pi^T \mathbf{1}_n = q$$

 π transport plan if it satisfies the mass constraints

$$\begin{cases} \pi \mathbf{1}_m = p \\ \pi^T \mathbf{1}_n = q \end{cases}$$

<

Discrete entropy of $\pi \in \mathbb{R}^{n \times m}_+$, $H(\pi) = -\sum_{i,j} \pi_{ij} \log (\pi_{ij})$

Regularized Optimal Transport $OT_{\gamma}(p,q;c) = \min_{\pi \in \mathbb{R}^{n \times m}_{+}} \sum_{\substack{1 \le i \le n \\ 1 \le j \le m}} c_{ij} \pi_{ij} \underbrace{-\gamma H(\pi)}_{\text{strongly convex}}$ s.t. $\pi \mathbf{1}_{m} = p, \pi^{T} \mathbf{1}_{n} = q$

Optimal Transport and Regularized Optimal Transport (2/2)

Regularization pushes the optimal transport plan away from the boundary, illustration from Peyré and Cuturi (2019)

The regularized optimal transport plan is stable, diffuse

4. From the Wasserstein distance to the Nested Distance

5. Optimal Transport and Regularized Optimal Transport

6. Sinkhorn's Algorithm

7. Nested Distance and Entropic Nested Distance

Sinkhorn's Algorithm to solve regularized OT (Peyré Cuturi 2019)

The optimal regularized transport plan is a rescaling of the Gibbs kernel G. $\pi^* = \operatorname{diag}(u^*) G \operatorname{diag}(v^*), u^*, v^* > 0$, where G is the Gibbs kernel defined by $G_{ij} = \exp\left(\frac{c_{ij}}{\gamma}\right)$.

Sinkhorn's Algorithm to solve regularized OT (Peyré Cuturi 2019)

The optimal regularized transport plan is a rescaling of the Gibbs kernel G. $\pi^* = \text{diag}(u^*) G \text{diag}(v^*), u^*, v^* > 0$, where G is the Gibbs kernel defined by $G_{ij} = \exp\left(\frac{c_{ij}}{\gamma}\right)$.

Alternatively rescaling the lines and columns of *G* (Sinkhorn's algorithm) converges to π^* .

$$\begin{cases} u_{k+1} = \mathbf{1}_n \ ./ \ (Gv_k) & (./ \text{ entrywise division}) \\ v_{k+1} = \mathbf{1}_m \ ./ \ (Gu_{k+1}) \ , \end{cases}$$
The optimal regularized transport plan is a rescaling of the Gibbs kernel G. $\pi^* = \text{diag}(u^*) G \text{diag}(v^*), u^*, v^* > 0$, where G is the Gibbs kernel defined by $G_{ij} = \exp\left(\frac{c_{ij}}{\gamma}\right)$.

Alternatively rescaling the lines and columns of *G* (Sinkhorn's algorithm) converges to π^* .

$$\begin{cases} u_{k+1} = \mathbf{1}_n \ ./ \ (Gv_k) & (./ \text{ entrywise division}) \\ v_{k+1} = \mathbf{1}_m \ ./ \ (Gu_{k+1}), \end{cases}$$

Sinkhorn's algorithm converges linearly to π^* .

The optimal regularized transport plan is a rescaling of the Gibbs kernel G. $\pi^* = \text{diag}(u^*) G \text{diag}(v^*), u^*, v^* > 0$, where G is the Gibbs kernel defined by $G_{ij} = \exp\left(\frac{c_{ij}}{\gamma}\right)$.

Alternatively rescaling the lines and columns of *G* (Sinkhorn's algorithm) converges to π^* .

$$\begin{cases} u_{k+1} = \mathbf{1}_n \ ./ \ (Gv_k) & (./ \text{ entrywise division}) \\ v_{k+1} = \mathbf{1}_m \ ./ \ (Gu_{k+1}) \ , \end{cases}$$

Sinkhorn's algorithm converges linearly to π^* .

Overall complexity when m = n. For every $\epsilon > 0$, setting $\gamma = \frac{\epsilon}{4 \log(n)}$, Sinkhorn's algorithm computes π^* in $O\left(n^2 \log(n)\epsilon^{-3}\right)$ operations s.t. $\sum_{ij} \pi^*_{ij}c_{ij} \leq \operatorname{OT}\left(p,q;c\right) + \epsilon$.

4. From the Wasserstein distance to the Nested Distance

5. Optimal Transport and Regularized Optimal Transport

6. Sinkhorn's Algorithm

7. Nested Distance and Entropic Nested Distance

. X and Y two scenario tree, $r \ge 1$, $d(x, y) = ||x - y||_r$ over \mathbb{R}^7

. Compute recursively backward in time functions $c_t: \mathbb{X}_{1:T} \times \mathbb{Y}_{1:T} \to \overline{\mathbb{R}}$

$$C_{T}(x_{1:T}, y_{1:T}) = d(x_{1:T}, y_{1:T}), \ \forall (x_{1:T}, y_{1:T}) \in \mathbb{X}_{1:T} \times \mathbb{Y}_{1:T},$$

- . X and Y two scenario tree, $r \ge 1$, $d(x, y) = ||x y||_r$ over \mathbb{R}^7
- . Compute recursively backward in time functions $c_t : \mathbb{X}_{1:T} \times \mathbb{Y}_{1:T} \to \overline{\mathbb{R}}$

$$\begin{cases} c_{T}(x_{1:T}, y_{1:T}) = d(x_{1:T}, y_{1:T}), \ \forall (x_{1:T}, y_{1:T}) \in \mathbb{X}_{1:T} \times \mathbb{Y}_{1:T}, \\ c_{t}(x_{1:T}, y_{1:T}) = \mathrm{OT}\left(P_{t+1}\left(\cdot \mid X_{1:t} = x_{1:t}\right), \tilde{P}_{t+1}\left(\cdot \mid Y_{1:t} = y_{1:t}\right); c_{t+1}^{r}\right)^{1/r}, \\ \forall t \in \llbracket 1, T - 1 \rrbracket, \ \forall (x_{1:T}, y_{1:T}) \in \mathbb{X}_{1:T} \times \mathbb{Y}_{1:T}. \end{cases}$$

- . X and Y two scenario tree, $r \ge 1$, $d(x, y) = ||x y||_r$ over \mathbb{R}^7
- . Compute recursively backward in time functions $c_t : \mathbb{X}_{1:T} \times \mathbb{Y}_{1:T} \to \overline{\mathbb{R}}$

$$\begin{cases} c_T (x_{1:T}, y_{1:T}) = d (x_{1:T}, y_{1:T}), \ \forall (x_{1:T}, y_{1:T}) \in \mathbb{X}_{1:T} \times \mathbb{Y}_{1:T}, \\ c_t (x_{1:T}, y_{1:T}) = \mathrm{OT} \left(P_{t+1} \left(\cdot \mid X_{1:t} = x_{1:t} \right), \tilde{P}_{t+1} \left(\cdot \mid Y_{1:t} = y_{1:t} \right); c_{t+1}^r \right)^{1/r}, \\ \forall t \in \llbracket 1, T - 1 \rrbracket, \ \forall (x_{1:T}, y_{1:T}) \in \mathbb{X}_{1:T} \times \mathbb{Y}_{1:T}. \end{cases}$$

 $ND_r(X, Y) := OT(P_T, \tilde{P}_T, c_1^r)^{1/r}$ is the *r*-Nested Distance

Entropic regularization of the Nested Distance

- . X and Y two scenario tree, $r \ge 1$, $d(x, y) = ||x y||_r$ over \mathbb{R}^7
- . Compute recursively backward in time functions $c_t : \mathbb{X}_{1:T} \times \mathbb{Y}_{1:T} \to \overline{\mathbb{R}}$

$$\begin{cases} c_T(x_{1:T}, y_{1:T}) = d(x_{1:T}, y_{1:T}), \ \forall (x_{1:T}, y_{1:T}) \in \mathbb{X}_{1:T} \times \mathbb{Y}_{1:T} \\ c_t(x_{1:T}, y_{1:T}) = OT_{\gamma} \left(P_{t+1}(\cdot \mid X_{1:t} = x_{1:t}), \tilde{P}_{t+1}(\cdot \mid Y_{1:t} = y_{1:t}); c_{t+1}^r \right)^{1/r} \\ \forall t \in \llbracket 1, T - 1 \rrbracket, \ \forall (x_{1:T}, y_{1:T}) \in \mathbb{X}_{1:T} \times \mathbb{Y}_{1:T} \\ \gamma = \max_{\substack{x_{1:t+1} \in x_{1:t}^+ \\ y_{1:t+1} \in y_{1:t}^+}} c_{t+1}^r(x_{1:t+1}, y_{1:t+1}) / 30. \end{cases}$$

 $\operatorname{END}_r(X,Y) := \operatorname{OT}_{\gamma} \left(P_T, \tilde{P}_T, c_1^r \right)^{1/r}$ is the Entropic regularization of the *r*-Nested Distance

Nested Distance (ND) vs Entropic Nested Distance (END)

Main property of the Nested Distance is preserved $|v(X) - v(Y)| \le L \cdot \text{ND}_r (X, Y) \le L \cdot \text{END}_r (X, Y) \,.$

Nested Distance (ND) vs Entropic Nested Distance (END)

Main property of the Nested Distance is preserved

$$|v(X) - v(Y)| \le L \cdot ND_r(X, Y) \le L \cdot END_r(X, Y).$$

Toy problem with varying horizon T

Horizon T	ND_2 (ms)	END_2 (ms)	Speedup	Rel. error (%)
2	0.26	0.014	16	0.14
4	3.8	0.14	25	0.25
6	115	6.3	33	0.51
8	1077	28	35	0.35
10	18205	493	36	0.41

Average results after 10 runs, Jupyter notebook in Julia 1.5.2 of this experiment is available at https://github.com/BenoitTran/END

26/28

Perspectives on regularizations of the Nested Distance

• Pichler and Weinhardt (2021): dual characterization of regularized ND and upper bound on approximation error

Perspectives on regularizations of the Nested Distance

- Pichler and Weinhardt (2021): dual characterization of regularized ND and upper bound on approximation error
- Blondel and al. (2018): OT problems with sparsity inducing regularization term

- Pichler and Weinhardt (2021): dual characterization of regularized ND and upper bound on approximation error
- Blondel and al. (2018): OT problems with sparsity inducing regularization term
- Entropic regularization computes approximate value of OT problem but optimal transport plan is different: optimal transport plan is sparse whereas regularized optimal transport plan is dense.

- Pichler and Weinhardt (2021): dual characterization of regularized ND and upper bound on approximation error
- Blondel and al. (2018): OT problems with sparsity inducing regularization term
- Entropic regularization computes approximate value of OT problem but optimal transport plan is different: optimal transport plan is sparse whereas regularized optimal transport plan is dense.
- Work in progress: Sparse regularization of the Nested Distance for scenario tree reduction algorithms

Webpage: https://benoittran.github.io/ E-mail: benoit.tran@tutanota.com

Thank you !