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Multistage Stochastic optimization Problems (MSP)

Multistage Stochastic optimization Problem

min
(X,U)

E

[T−1∑
t=0

cWt+1
t (Xt,Ut) + ψ (XT)

]
s.t. X0 = x0 given, ∀t ∈ [[0, T − 1]]

Xt+1 = fWt+1
t (Xt,Ut)

σ (Ut) ⊂ σ (X0,W1, . . . ,Wt+1) (Hazard-Decision)

Assumption (Finite support independent noises)
The sequence (Wt)t∈[[1,T]] is made of independent random
variables each with finite support
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Bellman operators and Dynamic Programming

MSP can be solved by Dynamic Programming

• Pointwise Bellman operator
for all w ∈ supp (Wt+1) and φ : X → R

Bwt (φ) : x ∈ X 7→ min
u

(
cwt (x,u) + φ

(
fwt (x,u)

))
∈ R

• (Average) Bellman operator

Bt (φ) : x ∈ X 7→ EWt+1

[
BWt+1
t (φ) (x)

]
∈ R

• Dynamic Programming Equations

VT = ψ and ∀t ∈ [[0, T − 1]], Vt = Bt (Vt+1)

• Vt is called the value function at time t ∈ [[0, T]]

• The value of MSP is equal to V0 (x0)
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Min-plus & Max-plus approximations of Vt

Build an algorithm that simultaneously generates upper and
lower approximations of Vt as

min-plus linear and max-plus linear combinations of
basic functions

V
k
t

V k
t

Vt

For all t ∈ [[0, T]], construct
increasing sequences of basic
functions

(
Fkt
)
k∈N

and
(
Fkt
)
k∈N

Vkt = sup
φ∈Fkt

φ

Vkt = inf
φ∈Fkt

φ
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Min-plus & Max-plus approximations of Vt

Build an algorithm that simultaneously generates upper and
lower approximations of Vt as

min-plus linear and max-plus linear combinations of
basic functions

• Generalizes the Min-plus algorithm for deterministic
control problems (McEneaney 2007, Qu 2014) giving upper
approximations as infima of quadratics

• and the Stochastic Dual Dynamic Programming (SDDP)
algorithm (Pereira and Pinto 1991, Shapiro 2011, ...) giving
lower approximations as suprema of affine cuts
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Lipschitz Multistage Stochastic optimization Problems

Assumption (Lipschitz dynamic, costs and constraints)
For every time t < T and w ∈ supp (Wt+1),

• dynamics fwt are Lipschitz continuous
• cost cwt are Lipschitz continuous on dom cwt
• constraint set-valued mapping Uwt is Lipschitz continuous
on Xt,

dH (Uwt (x1) ,Uwt (x2)) ≤ LUw
t
‖x1 − x2‖

Proposition (Lipschitz MSP implies regularity of Bt)

If V : X → R Lt+1-Lipschitz on Xt+1,
then Bt (V) is Lt-Lipschitz on Xt for some constant Lt > 0
which only depends on the data of the MSP problem and Lt+1.
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Constraint set-valued mapping

For each noise w ∈ supp (Wt+1), t ∈ [[0, T − 1]], define the
constraint set-valued mapping Uwt : X ⇒ U

Uwt (x) := {u ∈ U | cwt (x,u) < +∞ and fwt (x,u) ∈ Xt+1} .1

Assumption (Recourse assumption)
The set-valued mapping Uwt is non-empty compact valued

Proposition (Known domains of Vt)
Under the recourse assumption, dom Vt = Xt

1∀w ∈ supp (Wt+1) , Xwt := πX
(
dom cwt

)
, and Xt := ∩w∈supp(Wt+1)X

w
t .
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How to select new basic functions ?

Input: sequence (xt)t∈[[0,T]] of trial points, sequence (Ft)t∈[[0,T]] of
sets of basic functions

Output: sequence (φt)t∈[[0,T]] of basic functions
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Input: sequence (xt)t∈[[0,T]] of trial points, sequence (Ft)t∈[[0,T]] of
sets of basic functions

Output: sequence (φt)t∈[[0,T]] of basic functions

Case t = T
Tightness Assumption (local property)

φT (xT) = VT (xT)

Validity Assumption (global property)

φT ≥ VT (Min-plus lin. combinations case)

φT ≤ VT (Max-plus lin. combinations case)
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Problem-child trajectory of Baucke and al. (2018)

Input: two sequences of functions V0, . . . , VT and V0, . . . , VT

Output: Problem-child trajectory, states (x∗0, . . . , x∗T).

Initial state x∗0 is given, then for t < T

1. For all w ∈ supp (Wt+1), compute optimal control at x∗t
uwt ∈ argmin

u∈U

(
cwt (x∗t ,u) + Vt+1

(
fwt (x∗t ,u)

))
2. Compute “the worst” noise
w∗ ∈ argmaxw∈Wt+1

(
Vt+1 − Vt+1

)(
fwt (x∗t ,uwt )

)
3. Set x∗t+1 = fw∗

t
(
x∗t ,uw

∗
t
)

Interpretation

Problem child trajectory = “Worst” optimal trajectory of
the lower approximations
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Tropical Dynamic Programming (TDP) algorithm

Algorithm 1 Tropical Dynamic Programming (TDP)
Input: Selection functions and (Wt)t∈[[1,T]] independent r.v. with

finite support.
Output: Sequence of sets

(
Fkt
)
k∈N

,
(
Fkt
)
k∈N

1: For every t ∈ [[0, T]], F0t := ∅ and F0t := ∅
2: for k ≥ 0 do
3: Forward. Compute Problem-child trajectory

(
xkt
)
t∈[[0,T]]

using Vkt = inf
φ∈Fkt

φ and Vkt = supφ∈Fkt
φ

4: Backward. Compute new basic functions
(
φt
)
t∈[[0,T]] and(

φt

)
t∈[[0,T]]

and update

Fk+1t := Fkt ∪
{
φt
}
and Fk+1t := Fkt ∪

{
φt

}
, t ∈ [[0, T]]

5: end for
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Tropical Dynamic Programming (TDP) algorithm
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Tropical Dynamic Programming (TDP) algorithm

Algorithm 4 Tropical Dynamic Programming (TDP)
Input: Selection functions and (Wt)t∈[[1,T]] independent r.v. with

finite support.
Output: Sequence of sets

(
Fkt
)
k∈N

,
(
Fkt
)
k∈N

1: For every t ∈ [[0, T]], F0t := ∅ and F0t := ∅
2: for k ≥ 0 do
3: Forward. Compute Problem-child trajectory

(
xkt
)
t∈[[0,T]]

using Vkt = inf
φ∈Fkt

φ and Vkt = supφ∈Fkt
φ

4: Backward. Compute new basic functions
(
φt
)
t∈[[0,T]] and(

φt

)
t∈[[0,T]]

and update

Fk+1t := Fkt ∪
{
φt
}
and Fk+1t := Fkt ∪

{
φt

}
, t ∈ [[0, T]]

5: end for
9/28



Part content

1. Lipschitz Multistage Stochastic optimization Problems

2. Tropical Dynamic Programming (TDP)

3. Convergence result of TDP and numerical illustration

9/28



Convergence to limits V∗
t and V

∗
t

Under finite independent noises, Lipschitz data and recourse
assumptions we have

Existence of an approximating limit

The sequence of functions
(
Vkt

)
k∈N

(resp.
(
Vkt

)
k∈N

)
generated by TDP converges uniformly on every compact set
included in the domain of Vt to a function V∗t (resp. V

∗
t ).

Some features of TDP

• No need to discretize the state space
•
(
Vkt

)
k
and

(
Vkt

)
k
are monotonic

• V∗t and V
∗
t are close to Vt on “interesting points”, but may

be far from Vt elsewhere.
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Asymptotic convergence of TDP

Under finite independent noises, Lipschitz data and recourse
assumptions we have

Convergence of TDP [Akian, Chancelier, T., 2020]
Denote by

(
xkt
)
0≤t≤T the k-th Problem-child trajectory.

For every accumulation point x∗t of
(
xkt
)
k∈N, we have

Vkt
(
xkt
)
− Vkt

(
xkt
)
−→ 0
k→+∞

and V∗t (x∗t ) = Vt (x∗t ) = V∗t (x∗t )

This result generalizes the convergence of SDDP à la [Philpott
and al. (2013)] and [Baucke and al. (2018)] seen as a specific
instance of TDP for the linear-polyhedral framework
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Idea of the proof, details in [Akian, Chancelier, T., 2020]

•
(
Vkt

)
k
(resp.

(
Vkt

)
k
) converges uniformly to V∗t (resp. V

∗
t )

on the domain of Vt by Arzela-Ascoli theorem

• Exploiting monotonicity of the approximations and that
each operator Bwt is order preserving

0 ≤ Vk+1t

(
xkt
)
− Vk+1t

(
xkt
)

≤
∑

w∈supp(Wt+1)

P [Wt+1 = w]
[(
Vkt+1 − Vkt+1

)(
fwt

(
xkt ,ukt (w)

))]
• PC-trajectory is the “worst” optimal trajectory

0 ≤ Vk+1t

(
xkt
)
− Vk+1t

(
xkt
)
≤ Vkt+1

(
xkt+1

)
− Vkt+1

(
xkt+1

)
• Taking the limit in k

0 ≤ V∗t (x∗t )− V∗t (x∗t ) ≤ V∗t+1
(
x∗t+1

)
− V∗t+1

(
x∗t+1

)
• Conclude by backward recursion on t
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)
≤ Vkt+1

(
xkt+1

)
− Vkt+1

(
xkt+1

)
• Taking the limit in k

0 ≤ V∗t (x∗t )− V∗t (x∗t ) ≤ V∗t+1
(
x∗t+1

)
− V∗t+1

(
x∗t+1

)
• Conclude by backward recursion on t 12/28



Linear-polyhedral framework

Linear dynamics (x,u) 7→ fwt (x,u)

Polyhedral costs (x,u) 7→ cwt (x,u) (convex polyhedral epigraph)

Proposition (Linear-polyhedral MSP are Lipschitz MSP)
Linear-polyhedral MSP are Lipschitz MSP

Proof.
The constraint mapping Uwt has a convex polyhedral graph
thus (e.g. [Rockafellar-Wets, Variational Analysis]) is Lipschitz
with an explicit constant

13/28



U-SDDP on a linear-polyhedral example

Time step

Iteration

0 1 2

1

3

6
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V-SDDP on a linear-polyhedral example

Time step

Iteration

0 1 2

1
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10
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Complexity of TDP

• G. Lan obtained complexity of SDDP (and EDDP) in 2020
Precision of Tε archived after at most T(Dε + 1)N iterations
D diameter state spaces
N dimension state/control (decision) space

• Straightforward modifications of Lan’s proof yield the
same complexity result for TDP

• For TDP, overall complexity depends on the complexity of
computing basic functions

Selection mapping Computational difficulty
SDDP Card (Wt+1) LPs
U Card (Wt+1) · Card (F) QPs
V one LP
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Conclusion on TDP

• Monotonic approximations
(
Vkt

)
k
and

(
Vkt

)
k
of Vt

• Min-plus linear or Max-plus linear combinations of basic
functions

• Tight and Valid basic functions
• Approximations refined along the Problem-child trajectory
without discretizing state space

• Gap between upper and lower approximation vanishes
along the Problem-child trajectory

• Generalizes [Philpott and al. (2013)] and [Baucke and al.
(2018)] for a variant of SDDP

• Additional results (deterministic case) in [Akian,
Chancelier, T. (2018)]

• Currently working with Vincent Guigues on regularization
techniques for SDDP
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Recall of the outline

1. Tropical Dynamic Programming
with M. Akian (Ecole Polytechnique) and
J-P. Chancelier (Ecole des Ponts ParisTech)

V
k
t

V k
t

Vt

2. Entropic Regularization of the Nested Distance
with Z. Qu (Hong Kong University)



Part content

4. From the Wasserstein distance to the Nested Distance

5. Optimal Transport and Regularized Optimal Transport

6. Sinkhorn’s Algorithm

7. Nested Distance and Entropic Nested Distance
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A distance between scenario trees

Figure 3: Two scenario trees X and Y , Nested Distance is
ND2 (X, Y) = 1.009 its entropic regularization is END2 (X, Y) = 1.011.

Scenario tree
A stochastic process (Xt)t∈[[1,T]] is a scenario tree if it is also
discrete and finite in space 18/28



From the Wasserstein distance to the Nested Distance (1/2)

Buying an object with random prices at the best average price.

v (Z) = min
u

E

[ 2∑
t=0

Ztut

]
|

ut ∈ {0, 1} ,
ut is Ft -measurable,∑T

t=0 ut = 1,

 .

A

A+ ε

A− ε

2A

0

0.5

0.5

1

1

A A

2A

0

1
0.5

0.5

Proximity in Wasserstein metric

W (X, Y) = 2ε

Arbitrarily large gap in values

|v (X)− v (Y)| = A− ε

2 19/28



From the Wasserstein distance to the Nested Distance (2/2)

Wasserstein distance is not suited for MSP

For every L > 0, there exists a initial price A s.t.

|v (X)− v (Y)︸ ︷︷ ︸
A−ε
2

| � L · W (X, Y)︸ ︷︷ ︸
2ε

The Nested Distance is suited for MSP

There exists L > 0 s.t. for every initial price A

|v (X)− v (Y)| ≤ L · ND (X, Y)︸ ︷︷ ︸
=A+ε

(Pflug and Pichler, 2012)
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Part content

4. From the Wasserstein distance to the Nested Distance

5. Optimal Transport and Regularized Optimal Transport

6. Sinkhorn’s Algorithm

7. Nested Distance and Entropic Nested Distance
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Optimal Transport and Regularized Optimal Transport (1/2)

Optimal Transport
OT (p,q; c) = minπ∈Rn×m

+

∑
1≤i≤n
1≤j≤m

cijπij s.t. π1m = p, πT1n = q

π transport plan if it satisfies
the mass constraints{

π1m = p
πT1n = q

Discrete entropy of π ∈ Rn×m+ , H(π) = −
∑

i,j πij log
(
πij

)
Regularized Optimal Transport
OTγ (p,q; c) = minπ∈Rn×m

+

∑
1≤i≤n
1≤j≤m

cijπij −γH(π)︸ ︷︷ ︸
strongly convex

s.t. π1m = p, πT1n = q
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Optimal Transport and Regularized Optimal Transport (2/2)

Regularization pushes the optimal transport plan away from
the boundary, illustration from Peyré and Cuturi (2019)

The regularized optimal transport plan is stable, diffuse

22/28
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Sinkhorn’s Algorithm to solve regularized OT (Peyré Cuturi 2019)

The optimal regularized transport plan is a rescaling of the
Gibbs kernel G. π∗ = diag (u∗)Gdiag (v∗) ,u∗, v∗ > 0, where G is
the Gibbs kernel defined by Gij = exp

(
cij
γ

)
.

Alternatively rescaling the lines and columns of G (Sinkhorn’s
algorithm) converges to π∗.{

uk+1 = 1n ./ (Gvk) (./ entrywise division)
vk+1 = 1m ./ (Guk+1) ,

Sinkhorn’s algorithm converges linearly to π∗.

Overall complexity when m = n. For every ε > 0, setting
γ = ε

4 log(n) , Sinkhorn’s algorithm computes π∗ in
O
(
n2 log(n)ε−3

)
operations s.t.

∑
ij π

∗
ijcij ≤ OT (p,q; c) + ε.
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Nested Distance between scenario trees

. X and Y two scenario tree, r ≥ 1, d (x, y) = ‖x − y‖r over RT

. Compute recursively backward in time functions
ct : X1:T × Y1:T → R


cT (x1:T , y1:T) = d (x1:T , y1:T) , ∀ (x1:T , y1:T) ∈ X1:T × Y1:T ,

ct (x1:T , y1:T) = OT
(
Pt+1 (· | X1:t = x1:t) , P̃t+1 (· | Y1:t = y1:t) ; crt+1

)1/r
,

∀t ∈ [[1, T − 1]], ∀ (x1:T , y1:T) ∈ X1:T × Y1:T .

NDr (X, Y) := OT
(
PT , P̃T , cr1

)1/r
is the r-Nested Distance
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Entropic regularization of the Nested Distance

. X and Y two scenario tree, r ≥ 1, d (x, y) = ‖x − y‖r over RT

. Compute recursively backward in time functions
ct : X1:T × Y1:T → R



cT (x1:T , y1:T) = d (x1:T , y1:T) , ∀ (x1:T , y1:T) ∈ X1:T × Y1:T

ct (x1:T , y1:T) = OTγ

(
Pt+1 (· | X1:t = x1:t) , P̃t+1 (· | Y1:t = y1:t) ; crt+1

)1/r
∀t ∈ [[1, T − 1]], ∀ (x1:T , y1:T) ∈ X1:T × Y1:T
γ = max

x1:t+1∈x+1:t
y1:t+1∈y+1:t

crt+1 (x1:t+1, y1:t+1) /30.

ENDr (X, Y) := OTγ

(
PT , P̃T , cr1

)1/r
is the Entropic regularization

of the r-Nested Distance
25/28



Nested Distance (ND) vs Entropic Nested Distance (END)

Main property of the Nested Distance is preserved

|v(X)− v(Y)| ≤ L · NDr (X, Y) ≤ L · ENDr (X, Y) .

Toy problem with varying horizon T

Horizon T ND2 (ms) END2 (ms) Speedup Rel. error (%)
2 0.26 0.014 16 0.14
4 3.8 0.14 25 0.25
6 115 6.3 33 0.51
8 1077 28 35 0.35
10 18205 493 36 0.41

Average results after 10 runs, Jupyter notebook in Julia 1.5.2 of
this experiment is available at
https://github.com/BenoitTran/END
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Perspectives on regularizations of the Nested Distance

• Pichler and Weinhardt (2021): dual characterization of
regularized ND and upper bound on approximation error

• Blondel and al. (2018): OT problems with sparsity inducing
regularization term

• Entropic regularization computes approximate value of OT
problem but optimal transport plan is different: optimal
transport plan is sparse whereas regularized optimal
transport plan is dense.

• Work in progress: Sparse regularization of the Nested
Distance for scenario tree reduction algorithms
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