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Dynamic Programming and Bellman operators

Given an integer T > 0, consider the Dynamic Programming
equations {

VT = ψ

∀t ∈ [[0, T − 1]], Vt = Bt(Vt+1)

where

• Ψ is a function called the final cost function
• Bt is an operator called the Bellman operator
• Vt is called the value function at time t ∈ [[0, T]]
• We want to compute V0 (x0) at some given state x0
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Deterministic Multistage (Convex) Programming (MSP)

Consider the Deterministic Multistage optimization problem

min
(x,u)

T−1∑
t=0

ct (xt,ut) + ψ (xT)

s.t. ∀t ∈ [[0, T − 1]],
xt+1 = ft (xt,ut) , x0 given.

Deterministic Multistage optimization problems can be solved
by Dynamic Programming by setting
Bt (φ) (x) = minu ct (x,u) + φ (ft (x,u)) (Bellman operator) with
final cost VT := ψ.
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What we will do

Build an algorithm that builds approximations of the value
functions Vt based on properties of the Bellman operators Bt,

e.g. monotonicity

It must generalize the Stochastic Dual Dynamic Programming
(SDDP) algorithm (developed by Pereira and Pinto 1991,

Shapiro 2011, ...)
and the Min-plus algorithm for deterministic control problems

(developed by McEneaney 2007, Qu 2014)
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Overview of our algorithm

Lower approximations Vtk as a supremum of basic functions
(affine functions for SDDP) below Vt
Upper approximations Vt

k as an infimum of some other basic
functions (quadratic functions for Min-Plus) above Vt
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Outline

1. Tropical Dynamic Programming (TDP): an algorithm
encompassing both SDDP and a Min-Plus algorithm

2. Convergence result of TDP

3. Numerical example: deterministic linear-quadratic optimal
control with one constrained control
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Section content

1. Tropical Dynamic Programming (TDP): an algorithm
encompassing both SDDP and a Min-Plus algorithm

1.1 Trial points and selection functions

1.2 Tropical Dynamic Programming (TDP)
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Trial points and selection functions: SDDP exemple

SDDP Exemple

• Affine functions
• Lower
approximations
opt = sup

• Vkt+1 := supφ∈Φk
t+1
φ
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Trial points and selection functions: Min-Plus exemple

Min-Plus Exemple

• Quadratic
functions

• Upper
approximations
opt = inf

• Vkt+1 := inf
φ∈Φk

t+1
φ
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Tight and Valid selection functions

Tightness Assumption
Selection function︷ ︸︸ ︷

φSDDPt


Set of basic functions︷︸︸︷

Φkt+1 , xk−1t


︸ ︷︷ ︸

Basic function

(

Trial point︷︸︸︷
xk−1t ) = Bt

(
Vkt+1

)(
xk−1t

)

It is a local property.

Validity Assumption

φSDDPt

(
Φkt+1, xk−1t

)
≤ Bt

(
Vkt+1

)
(SDDP) opt = sup

φMin-Plust

(
Φ
k
t+1, xk−1t

)
≥ Bt

(
Vkt+1

)
(Min-Plus) opt = inf

It is a global property

.
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Scheme of Tropical Dynamic Programming (TDP) algorithm

1. Initialize the approximations to infinity.

2. Input: Given a current set of basic functions Φkt ,
characterizing the current approximation
x 7→ Vkt (x) := optφ∈Φk

t
φ(x). We are also given a probability

law µk over the set of states.
3. “Forward phase”: draw new trial points

(
xkt
)
t according to

µk.
4. Backward phase: backward in time, evaluate the selection
function at Φkt+1 and the trial point xkt , which gives a new
basic function φ that is added to the current set of
approximations

Φk+1t = Φkt ∪ {φ} .

5. Update: knowing the updated set of approximations(
Φk+1t

)
t
compute a new probability law µk+1.
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Section content

2. Convergence result of TDP

2.1 Almost sure uniform convergence to a limit V∗t
2.2 Optimal sets: the trial points need to be rich enough
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Almost sure uniform convergence to a limit V∗
t

If the Bellman operators Bt are order-preserving ”+” mild
technical assumptions on Bt and the basic functions, we have

Existence of an approximating limit
Let t ∈ [[0, T]] be fixed. The sequence of functions

(
Vkt
)
k∈N

generated by TDP µ-a.s. converges uniformly on every
compact set included in the domain of Vt to a function V∗t .

Is V∗
t equal to Vt ?
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Optimal sets: the trial points need to be rich enough

Optimal sets
Let (φt)t∈[[0,T]] be T + 1 functions. A sequence of sets (St)t∈[[0,T]]
is said to be (φt)-optimal if for every t ∈ [[0, T − 1]]

Bt
(
φt+1 + δSt+1

)
+ δSt = Bt (φt+1) + δSt .

jj kk ll mm

In order to compute Bt (φt+1) restricted to St, one only needs
to know φt+1 restricted to St+1.
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V∗
t is almost surely equal to Vt on a set of interest

Almost surely, the approximations
(
Vkt
)
k converges uniformly

to V∗t , which is equal to Vt on a set of interest

Convergence of TDP [Akian, Chancelier, T., 2018]
Define K∗t := lim supk supp

(
µkt
)
, for every time t ∈ [[0, T]].

Assume that, µ-a.s the sets (K∗t )t∈[[0,T]] are

• (Vt)-optimal if opt = inf ,
• (V∗t )-optimal if opt = sup.

Then, µ-a.s. for every t ∈ [[0, T]] the function V∗t is equal to the
value function Vt on K∗t .

This is the usual convergence result for SDDP, new for a
Min-Plus method
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Rough scheme of the proof, details in [Akian, Chancelier, T., 2018]

•
(
Vkt
)
k converges uniformly to V

∗
t on every compact in the

domain of Vt by Arzela-Ascoli theorem

• (V∗t )t satisfies a system of restricted Bellman Equations on
the sets (K∗t ):{

V∗T + δK∗T = ψ + δK∗T

∀t ∈ [[0, T − 1]], Bt
(
V∗t+1

)
+ δK∗t = V∗t + δK∗t

(1)

• If the sets (K∗t )t are (V∗t )-optimal when opt = sup 1,
satisfying (1) is enough to ensure that V∗t = Vt over K∗t

1resp. (Vt)-optimality of (K∗
t )t when opt = inf
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Section content

3. Numerical example: deterministic linear-quadratic optimal
control with one constrained control

3.1 SDDP selection function: Quadratic Programming

3.2 Min-Plus selection function: closed form formula

3.3 Numerical illustration on a toy example
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Deterministic linear-quadratic optimal control with one con-
strained control

Let β, γ be such that β < γ, we study the following Multistage
convex optimization problem involving a constraint on one of
the controls denoted by v:

min
x=(x0,...,xT)

u=(u0,...,uT−1)
v=(v0,...,vT−1)

T−1∑
t=0

ct(xt,ut, vt) + ψ(xT)

s.t.


x0 ∈ X is given,
∀t ∈ [[0, T − 1]], xt+1 = ft(xt,ut, vt)
∀t ∈ [[0, T − 1]], (ut, vt) ∈ U× [β, γ],

where ft is linear, ct and ψ are convex quadratic.
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SDDP selection function: Quadratic Programming

SDDP selection function, through a QP

b = min
x′∈X

(u,v)∈U×[β,γ]
λ∈R

[
ct
(
x′,u, v

)
+ λ
]

s.t.
{
x′ = x
φ (ft (x′,u, v)) ≤ λ ∀φ ∈ Φ .

Denote by b its optimal value and by a a Lagrange multiplier
of the constraint x′ − x = 0 at the optimum

φSDDPt (Φ, x) := x′ 7→ 〈a, x′ − x〉+ b .
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Min-Plus selection function: closed form formula

Discretize the constrained control: v ∈ VN where VN ⊂ V is of
cardinal N ∈ N. Add one dimension y ∈ R at the state space
and homogeneize the costs and dynamics.

Details in the CDC paper.

Min-Plus selection function

φmin-plust (Φ, x, y) = Bvt (φ)
for some (v, φ) ∈ argmin

(v,φ)∈VN×Φ
Bvt (φ)︸ ︷︷ ︸

Best image of current approximation
at the trial point

(x, y)︸ ︷︷ ︸
trial point

.

Bvt (φ) is given by a closed form formula (Discrete Algebraic
Riccati formula).
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Numerical illustration on a toy example: converging gap

The gap between upper and lower approximations converges
to 0 along the current optimal trajectories of SDDP
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• Plots of Vkt
(
xkt
)
and Vkt

(
xkt
)
with t in abscisses

• After 7 iterations (left), 18 iterations (middle) and 40
iterations (right)

• It is not straightforward to use a Min-Plus algorithm here,
see the CDC paper for details. 15/16



Summary

• Devised an algorithm that encompasses both SDDP and a
Min-Plus method

• It is based on properties of the Bellman operators
• Convergence result identical to the SDDP literature, new
for the Min-Plus method (and maybe others)

• Basic functions added at each step have to be tight and
valid

• Trial points have to be “rich enough”: either Vt-optimal
(for upper approximations) or V∗t -optimal (for lower
approximations) is sufficent

• Upcoming: this work can easily be extended to a
stochastic framework with white finite noises. Also, upper
and lower bounds can be refined on a same set of points.
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Additional notations

• opt an operation that is either the pointwise infimum or
the pointwise supremum of functions.

• R the extended reals endowed with the operations
+∞+ (−∞) = −∞+∞ = +∞.

• For every t ∈ [[0, T]], fix Ft and Ft two subsets of
(
R
)X the

set of functions on X such that Ft ⊂ Ft.
• A function φ is a basic function if φ ∈ Ft for some t ∈ [[0, T]].
• For every set X ⊂ X, denote by δX the function equal to 0
on X and +∞ elsewhere.

• For every t ∈ [[0, T]] and every set of basic functions
Φt ⊂ Ft, we denote by VΦt its pointwise optimum,
VΦt := optφ∈Φt φ, i.e.

VΦt : X −→ R
x 7−→ opt {φ(x) | φ ∈ Φt} .

(2)



Structural assumptions i

• Common regularity: for every t ∈ [[0, T]], there exists a
common (local) modulus of continuity of all φ ∈ Ft.

• Final condition: for some ΦT of FT , ψ := VΦT .
• Stability by the Bellman operators: if φ ∈ Ft+1, then Bt (φ)
belongs to Ft.

• Stability by pointwise optimum: if Φt ⊂ Ft then VΦt ∈ Ft.
• Stability by pointwise convergence: if

(
φk
)
k∈N ⊂ Ft

converges pointwise to φ on the domain of Vt, then φ ∈ Ft.
• Order preserving operators: φ ≤ ϕ implies Bt (φ) ≤ Bt (ϕ).
• Existence of the value functions: the solution (Vt)t∈[[0,T]]
exist and each Vt is proper.



Structural assumptions ii

• Existence of optimal sets: for every compact set
Kt ⊂ dom (Vt), for every function φ ∈ Ft+1 and constant
λ ∈ R, there exists a compact set Kt+1 ⊂ dom (Vt+1) such
that we have

Bt
(
φ+ λ+ δKt+1

)
≤ Bt (φ+ λ) + δKt.

• Additively subhomogeneous operators: for every
compact set Kt, there exists Mt > 0 s.t. for every constant
function λ and every function φ ∈ Ft+1, we have

Bt (φ+ λ) + δKt ≤ Bt (φ) + λMt + δKt.



Discretization of the constrained control

Fix an integer N ≥ 2, set vi = β + iγ−β
N−1 for every 0 ≤ i ≤ N− 1

and set V := {v0, v1, . . . vN−1}. We define the following
unconstrained switched multistage linear quadratic problem:

min
x∈XT

(u,v)∈(U×V)T−1

T−1∑
t=0

cvtt (xt,ut) + ψ(xT)

s.t.


x0 ∈ X is given,
∀t ∈ [[0, T − 1]], xt+1 = f vtt (xt,ut)
∀t ∈ [[0, T − 1]], vt ∈ V ,



Homogeneization

Define the homogeneized costs and dynamics

f̃t
v
(x, y,u) =

(
At vbt
0 1

)(
x
y

)
+

(
Bt
0

)
u,

c̃tv(x, y,u) =
(
x
y

)T (
Ct 0
0 v2dt

)(
x
y

)
+ uTDtu,

Unconstrained 2-homogeneous MCP

min
(x,y)∈(X×R)T

(u,v)∈(U×V)T−1

T−1∑
t=0

c̃tvt(xt, yt,ut) + ψ̃(xT , yT)

s.t.
{
(x0, y0) ∈ X× R is given,

∀t ∈ [[0, T − 1]], (xt+1, yt+1) = f̃t
vt
(xt, yt,ut) .



Numerical illustration on a toy example: time spent
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• When the system does not often switch, the Min-plus part
is fast. The more the system switches, the more the
Min-plus algorithm is time consuming.

• SDDP is not affected by the switching aspect.



Multistage Stochastic Convex Programming (MSCP)

MSCP can be solved by Dynamic Programming

min
(X,U)

E

[T−1∑
t=0

ct (Xt,Ut,Wt+1) + ψ (XT)
]

s.t. ∀t ∈ [[0, T − 1]]
Xt+1 = ft (Xt,Ut,Wt+1) , X0 given
σ (Ut) ⊂ σ (W0, . . . ,Wt+1)

where the noise process (Wt)t∈[[1,T]] is an independent
sequence of random variables of finite supports

B̃t (φ) (x,w) = minu ct (x,u,w) + φ (ft (x,u,w))

Bt (φ) (x) = E
[
B̃t (x,Wt+1)

]



Current optimal trajectories of Baucke-Downward-Zackeri

Input:
(
Vkt
)
t
and

(
Vkt
)
t
upper and lower current

approximations generated by TDP given a Multistage stochastic
convex optimization problem

We construct a deterministic trajectory
(
xkt
)
t∈[[0,T]], optimal (in

the sense introduced beforehand) for the current
approximations.

Forward in time

• Set xk0 := x0
• For each noise w, compute an optimal control ukt (w) to
apply at xkt for the lower current approximation Vkt

• Find a noise wkt+1 which maximises
argmaxw

(
Vkt+1 − Vkt+1

) (
ft
(
xkt ,ukt (w) ,w

))
• Set xkt+1 := ft

(
xkt ,ukt

(
wkt
)
,wkt

)
and iterate
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Using the optimal trajectories of lower approximations (SDDP)
as trial points for upper approximations (Min-Plus)

Denote by
(
xkt
)
t∈[[0,T]] the deterministic current optimal

trajectory of Baucke-Downward-Zackeri

Backward in time

• Compute a new upper basic function φ by evaluating a
selection function at Φk+1t+1 and xkt

• Add the new basic function φ to the current collection of
upper basic functions Φk+1t = Φ

k
t ∪
{
φ
}

• Compute a new lower basic function φ by evaluating a
selection function at Φk+1t+1 and xkt

• Add the new basic function φ to the current collection of
lower basic functions Φk+1t = Φkt ∪

{
φ
}
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