A Min-Plus / SDDP Algorithm for Deterministic Multistage Convex Programming

Marianne Akian, Jean-Philippe Chancelier and <u>Benoît Tran</u> December 12th 2019

CDC 2019

École des Ponts

Paris**Tech**

Given an integer *T* > 0, consider the Dynamic Programming equations

$$\begin{cases} V_T = \psi \\ \forall t \in \llbracket 0, T - 1 \rrbracket, \ V_t = \mathcal{B}_t(V_{t+1}) \end{cases}$$

where

- $\cdot \,\, \Psi$ is a function called the final cost function
- + \mathcal{B}_t is an operator called the Bellman operator
- V_t is called the value function at time $t \in \llbracket 0, T \rrbracket$
- We want to compute $V_0(x_0)$ at some given state x_0

Consider the Deterministic Multistage optimization problem

$$\begin{split} \min_{(x,u)} \sum_{t=0}^{T-1} c_t \left(x_t, u_t \right) + \psi \left(x_T \right) \\ \text{s.t. } \forall t \in \llbracket 0, T-1 \rrbracket, \\ x_{t+1} = f_t \left(x_t, u_t \right), \quad x_0 \text{ given.} \end{split}$$

Consider the Deterministic Multistage optimization problem

$$\begin{split} \min_{(x,u)} \sum_{t=0}^{T-1} c_t \left(x_t, u_t \right) + \psi \left(x_T \right) \\ \text{s.t. } \forall t \in \llbracket 0, T-1 \rrbracket, \\ x_{t+1} = f_t \left(x_t, u_t \right), \quad x_0 \text{ given.} \end{split}$$

Deterministic Multistage optimization problems can be solved by Dynamic Programming by setting $\mathcal{B}_t(\phi)(x) = \min_u c_t(x, u) + \phi(f_t(x, u))$ (Bellman operator) with final cost $V_T := \psi$.

Build an algorithm that builds approximations of the value functions V_t based on properties of the Bellman operators \mathcal{B}_t , e.g. monotonicity

Build an algorithm that builds approximations of the value functions V_t based on properties of the Bellman operators \mathcal{B}_t , e.g. monotonicity

It must generalize the Stochastic Dual Dynamic Programming (SDDP) algorithm (developed by Pereira and Pinto 1991, Shapiro 2011, ...) and the Min-plus algorithm for deterministic control problems

(developed by McEneaney 2007, Qu 2014)

Overview of our algorithm

Lower approximations V_t^k as a supremum of basic functions (affine functions for SDDP) below V_t Upper approximations $\overline{V_t}^k$ as an infimum of some other basic functions (quadratic functions for Min-Plus) above V_t 1. Tropical Dynamic Programming (TDP): an algorithm encompassing both SDDP and a Min-Plus algorithm

2. Convergence result of TDP

3. Numerical example: deterministic linear-quadratic optimal control with one constrained control

- 1. Tropical Dynamic Programming (TDP): an algorithm encompassing both SDDP and a Min-Plus algorithm
- 1.1 Trial points and selection functions
- 1.2 Tropical Dynamic Programming (TDP)

Trial points and selection functions: SDDP exemple

Trial points and selection functions: Min-Plus exemple

Tight and Valid selection functions

Tightness Assumption

It is a local property.

.

Tight and Valid selection functions

Tightness Assumption

It is a local property.

$$\begin{split} & \text{Validity Assumption} \\ & \phi_t^{\text{SDDP}}\left(\underline{\Phi}_{t+1}^k, x_t^{k-1}\right) \leq \mathcal{B}_t\left(\underline{V}_{t+1}^k\right) \quad (\text{SDDP}) \quad \text{opt} = \text{sup} \\ & \phi_t^{\text{Min-Plus}}\left(\overline{\Phi}_{t+1}^k, x_t^{k-1}\right) \geq \mathcal{B}_t\left(\overline{V}_{t+1}^k\right) \quad (\text{Min-Plus}) \quad \text{opt} = \inf \end{split}$$

It is a global property.

1. Initialize the approximations to infinity.

- 1. Initialize the approximations to infinity.
- 2. Input: Given a current set of basic functions Φ_t^k , characterizing the current approximation $x \mapsto V_t^k(x) := \operatorname{opt}_{\phi \in \Phi_t^k} \phi(x)$. We are also given a probability law μ^k over the set of states.

- 1. Initialize the approximations to infinity.
- 2. Input: Given a current set of basic functions Φ_t^k , characterizing the current approximation $x \mapsto V_t^k(x) := \operatorname{opt}_{\phi \in \Phi_t^k} \phi(x)$. We are also given a probability law μ^k over the set of states.
- 3. **"Forward phase":** draw new trial points $(x_t^k)_t$ according to μ^k .

- 1. Initialize the approximations to infinity.
- 2. Input: Given a current set of basic functions Φ_t^k , characterizing the current approximation $x \mapsto V_t^k(x) := \operatorname{opt}_{\phi \in \Phi_t^k} \phi(x)$. We are also given a probability law μ^k over the set of states.
- 3. **"Forward phase":** draw new trial points $(x_t^k)_t$ according to μ^k .
- 4. Backward phase: backward in time, evaluate the selection function at Φ_{t+1}^k and the trial point x_t^k , which gives a new basic function ϕ that is added to the current set of approximations

$$\Phi_t^{k+1} = \Phi_t^k \cup \{\phi\} \,.$$

- 1. Initialize the approximations to infinity.
- 2. Input: Given a current set of basic functions Φ_t^k , characterizing the current approximation $x \mapsto V_t^k(x) := \operatorname{opt}_{\phi \in \Phi_t^k} \phi(x)$. We are also given a probability law μ^k over the set of states.
- 3. **"Forward phase":** draw new trial points $(x_t^k)_t$ according to μ^k .
- 4. Backward phase: backward in time, evaluate the selection function at Φ_{t+1}^k and the trial point x_t^k , which gives a new basic function ϕ that is added to the current set of approximations

$$\Phi_t^{k+1} = \Phi_t^k \cup \{\phi\} \,.$$

5. **Update:** knowing the updated set of approximations $\left(\Phi_t^{k+1}\right)_t$ compute a new probability law μ^{k+1} .

2. Convergence result of TDP

- 2.1 Almost sure uniform convergence to a limit V_t^*
- 2.2 Optimal sets: the trial points need to be rich enough

If the Bellman operators \mathcal{B}_t are order-preserving "+" mild technical assumptions on \mathcal{B}_t and the basic functions, we have

Existence of an approximating limit

Let $t \in [0, T]$ be fixed. The sequence of functions $(V_t^k)_{k \in \mathbb{N}}$ generated by TDP μ -a.s. converges uniformly on every compact set included in the domain of V_t to a function V_t^* . If the Bellman operators \mathcal{B}_t are order-preserving "+" mild technical assumptions on \mathcal{B}_t and the basic functions, we have

Existence of an approximating limit

Let $t \in [\![0, T]\!]$ be fixed. The sequence of functions $(V_t^k)_{k \in \mathbb{N}}$ generated by TDP μ -a.s. converges uniformly on every compact set included in the domain of V_t to a function V_t^* .

Is V_t^* equal to V_t ?

Optimal sets: the trial points need to be rich enough

Optimal sets

Let $(\phi_t)_{t \in \llbracket 0, T \rrbracket}$ be T + 1 functions. A sequence of sets $(S_t)_{t \in \llbracket 0, T \rrbracket}$ is said to be (ϕ_t) -optimal if for every $t \in \llbracket 0, T - 1 \rrbracket$

$$\mathcal{B}_{t}\left(\phi_{t+1}+\delta_{S_{t+1}}\right)+\delta_{S_{t}}=\mathcal{B}_{t}\left(\phi_{t+1}\right)+\delta_{S_{t}}.$$

Optimal sets: the trial points need to be rich enough

Optimal sets

Let $(\phi_t)_{t \in \llbracket 0, T \rrbracket}$ be T + 1 functions. A sequence of sets $(S_t)_{t \in \llbracket 0, T \rrbracket}$ is said to be (ϕ_t) -optimal if for every $t \in \llbracket 0, T - 1 \rrbracket$

$$\mathcal{B}_{t}\left(\phi_{t+1}+\delta_{S_{t+1}}\right)+\delta_{S_{t}}=\mathcal{B}_{t}\left(\phi_{t+1}\right)+\delta_{S_{t}}.$$

In order to compute $\mathcal{B}_t(\phi_{t+1})$ restricted to S_t , one only needs to know ϕ_{t+1} restricted to S_{t+1} .

V_t^* is almost surely equal to V_t on a set of interest

Almost surely, the approximations $(V_t^k)_k$ converges uniformly to V_t^* , which is equal to V_t on a set of interest

Convergence of TDP [Akian, Chancelier, T., 2018]

Define $K_t^* := \limsup_k \sup(\mu_t^k)$, for every time $t \in [0, T]$. Assume that, μ -a.s the sets $(K_t^*)_{t \in [0,T]}$ are

- (V_t) -optimal if opt = inf,
- (V_t^*) -optimal if opt = sup.

Then, μ -a.s. for every $t \in [0, T]$ the function V_t^* is equal to the value function V_t on K_t^* .

V_t^* is almost surely equal to V_t on a set of interest

Almost surely, the approximations $(V_t^k)_k$ converges uniformly to V_t^* , which is equal to V_t on a set of interest

Convergence of TDP [Akian, Chancelier, T., 2018]

Define $K_t^* := \limsup_k \sup(\mu_t^k)$, for every time $t \in [0, T]$. Assume that, μ -a.s the sets $(K_t^*)_{t \in [0,T]}$ are

- (V_t) -optimal if opt = inf,
- (V_t^*) -optimal if opt = sup.

Then, μ -a.s. for every $t \in [0, T]$ the function V_t^* is equal to the value function V_t on K_t^* .

This is the usual convergence result for SDDP, new for a Min-Plus method

Rough scheme of the proof, details in [Akian, Chancelier, T., 2018]

• $(V_t^k)_k$ converges uniformly to V_t^* on every compact in the domain of V_t by Arzela-Ascoli theorem

¹resp. (V_t) -optimality of $(K_t^*)_t$ when opt = inf

- $(V_t^k)_k$ converges uniformly to V_t^* on every compact in the domain of V_t by Arzela-Ascoli theorem
- $(V_t^*)_t$ satisfies a system of restricted Bellman Equations on the sets (K_t^*) :

$$\begin{cases} \mathsf{V}_{T}^{*} + \delta_{\mathsf{K}_{T}^{*}} = \psi + \delta_{\mathsf{K}_{T}^{*}} \\ \forall t \in \llbracket 0, T - 1 \rrbracket, \ \mathcal{B}_{t} \left(\mathsf{V}_{t+1}^{*} \right) + \delta_{\mathsf{K}_{t}^{*}} = \mathsf{V}_{t}^{*} + \delta_{\mathsf{K}_{t}^{*}} \end{cases}$$
(1)

¹resp. (V_t) -optimality of $(K_t^*)_t$ when opt = inf

- $(V_t^k)_k$ converges uniformly to V_t^* on every compact in the domain of V_t by Arzela-Ascoli theorem
- $(V_t^*)_t$ satisfies a system of restricted Bellman Equations on the sets (K_t^*) :

$$\begin{cases} V_T^* + \delta_{K_T^*} = \psi + \delta_{K_T^*} \\ \forall t \in \llbracket 0, T - 1 \rrbracket, \ \mathcal{B}_t \left(V_{t+1}^* \right) + \delta_{K_t^*} = V_t^* + \delta_{K_t^*} \end{cases}$$
(1)

• If the sets $(K_t^*)_t$ are (V_t^*) -optimal when opt = sup ¹, satisfying (1) is enough to ensure that $V_t^* = V_t$ over K_t^*

¹resp. (*V_t*)-optimality of $(K_t^*)_t$ when **opt** = inf

- 3. Numerical example: deterministic linear-quadratic optimal control with one constrained control
- 3.1 SDDP selection function: Quadratic Programming
- 3.2 Min-Plus selection function: closed form formula
- 3.3 Numerical illustration on a toy example

Deterministic linear-quadratic optimal control with one constrained control

Let β, γ be such that $\beta < \gamma$, we study the following Multistage convex optimization problem involving a constraint on one of the controls denoted by *v*:

$$\min_{\substack{X=(X_{0},...,X_{T})\\ V=(V_{0},...,V_{T-1})}} \sum_{t=0}^{T-1} c_{t}(x_{t}, u_{t}, v_{t}) + \psi(x_{T}) \\
x_{t}(v_{0},...,v_{T-1}) \\
\text{s.t.} \begin{cases} x_{0} \in \mathbb{X} \text{ is given,} \\ \forall t \in [\![0, T-1]\!], \ x_{t+1} = f_{t}(x_{t}, u_{t}, v_{t}) \\ \forall t \in [\![0, T-1]\!], \ (u_{t}, \mathbf{v}_{t}) \in \mathbb{U} \times [\beta, \gamma] \end{cases}$$

where f_t is linear, c_t and ψ are convex quadratic.

SDDP selection function, through a QP

$$b = \min_{\substack{x' \in X \\ (u,v) \in \mathbb{U} \times [\beta,\gamma] \\ \lambda \in \mathbb{R}}} \left[c_t \left(x', u, v \right) + \lambda \right]$$

s.t.
$$\begin{cases} x' = x \\ \phi \left(f_t \left(x', u, v \right) \right) \le \lambda \quad \forall \phi \in \Phi \end{cases}$$

Denote by *b* its optimal value and by *a* a Lagrange multiplier of the constraint x' - x = 0 at the optimum

$$\phi_t^{\text{SDDP}}\left(\Phi, x\right) := x' \mapsto \langle a, x' - x \rangle + b$$
.

Discretize the constrained control: $v \in \mathbb{V}_N$ where $\mathbb{V}_N \subset \mathbb{V}$ is of cardinal $N \in \mathbb{N}$. Add one dimension $y \in \mathbb{R}$ at the state space and homogeneize the costs and dynamics.

Details in the CDC paper.

 $\mathcal{B}_t^{v}(\phi)$ is given by a closed form formula (Discrete Algebraic Riccati formula).

Numerical illustration on a toy example: converging gap

The gap between upper and lower approximations converges to 0 along the current optimal trajectories of SDDP

- Plots of $\overline{V}_t^k(\mathbf{x}_t^k)$ and $\underline{V}_t^k(\mathbf{x}_t^k)$ with t in abscisses
- After 7 iterations (left), 18 iterations (middle) and 40 iterations (right)
- It is not straightforward to use a Min-Plus algorithm here, see the CDC paper for details.

• Devised an algorithm that encompasses both SDDP and a Min-Plus method

- Devised an algorithm that encompasses both SDDP and a Min-Plus method
- It is based on properties of the Bellman operators

- Devised an algorithm that encompasses both SDDP and a Min-Plus method
- It is based on properties of the Bellman operators
- Convergence result identical to the SDDP literature, new for the Min-Plus method (and maybe others)

- Devised an algorithm that encompasses both SDDP and a Min-Plus method
- It is based on properties of the Bellman operators
- Convergence result identical to the SDDP literature, new for the Min-Plus method (and maybe others)
- Basic functions added at each step have to be tight and valid

- Devised an algorithm that encompasses both SDDP and a Min-Plus method
- It is based on properties of the Bellman operators
- Convergence result identical to the SDDP literature, new for the Min-Plus method (and maybe others)
- Basic functions added at each step have to be tight and valid
- Trial points have to be "rich enough": either V_t-optimal (for upper approximations) or V^{*}_t-optimal (for lower approximations) is sufficent

- Devised an algorithm that encompasses both SDDP and a Min-Plus method
- It is based on properties of the Bellman operators
- Convergence result identical to the SDDP literature, new for the Min-Plus method (and maybe others)
- Basic functions added at each step have to be tight and valid
- Trial points have to be "rich enough": either V_t-optimal (for upper approximations) or V^{*}_t-optimal (for lower approximations) is sufficent
- Upcoming: this work can easily be extended to a stochastic framework with white finite noises. Also, upper and lower bounds can be refined on a same set of points.

References

Marianne Akian, Jean-Philippe Chancelier, and Benoît Tran. A stochastic algorithm for deterministic multistage optimization problems. arXiv:1810.12870 [math], October 2018.

Marianne Akian, Jean-Philipe Chancelier, and Benoît Tran. A min-plus-sddp algorithm for deterministic multistage convex programming.

In 58th IEEE Conference on Decision and Control, 2019.

Webpage: https://benoittran.github.io/ E-mail: benoit.tran@enpc.fr

Thank you !

Additional notations

- opt an operation that is either the pointwise infimum or the pointwise supremum of functions.
- $\overline{\mathbb{R}}$ the extended reals endowed with the operations + $\infty + (-\infty) = -\infty + \infty = +\infty.$
- For every $t \in \llbracket 0, T \rrbracket$, fix F_t and \mathbb{F}_t two subsets of $(\overline{\mathbb{R}})^{\times}$ the set of functions on \mathbb{X} such that $F_t \subset \mathbb{F}_t$.
- A function ϕ is a basic function if $\phi \in F_t$ for some $t \in [0, T]$.
- For every set $X \subset \mathbb{X}$, denote by δ_X the function equal to 0 on X and $+\infty$ elsewhere.
- For every $t \in [\![0, T]\!]$ and every set of basic functions $\Phi_t \subset F_t$, we denote by \mathcal{V}_{Φ_t} its pointwise optimum, $\mathcal{V}_{\Phi_t} := \mathsf{opt}_{\phi \in \Phi_t} \phi$, *i.e.*

$$\begin{array}{cccc} \mathcal{V}_{\Phi_t} : & \mathbb{X} & \longrightarrow & \overline{\mathbb{R}} \\ & x & \longmapsto & \mathsf{opt} \left\{ \phi(x) \mid \phi \in \Phi_t \right\}. \end{array}$$

Structural assumptions i

- Common regularity: for every $t \in [\![0, T]\!]$, there exists a common (local) modulus of continuity of all $\phi \in \mathbb{F}_t$.
- Final condition: for some Φ_T of F_T , $\psi := \mathcal{V}_{\Phi_T}$.
- Stability by the Bellman operators: if $\phi \in \mathbb{F}_{t+1}$, then $\mathcal{B}_t(\phi)$ belongs to \mathbb{F}_t .
- Stability by pointwise optimum: if $\Phi_t \subset F_t$ then $\mathcal{V}_{\Phi_t} \in \mathbb{F}_t$.
- Stability by pointwise convergence: if $(\phi^k)_{k \in \mathbb{N}} \subset \mathbb{F}_t$ converges pointwise to ϕ on the domain of V_t , then $\phi \in \mathbb{F}_t$.
- Order preserving operators: $\phi \leq \varphi$ implies $\mathcal{B}_{t}(\phi) \leq \mathcal{B}_{t}(\varphi)$.
- Existence of the value functions: the solution $(V_t)_{t \in [0,T]}$ exist and each V_t is proper.

Structural assumptions ii

• Existence of optimal sets: for every compact set $K_t \subset \text{dom}(V_t)$, for every function $\phi \in \mathbb{F}_{t+1}$ and constant $\lambda \in \mathbb{R}$, there exists a compact set $K_{t+1} \subset \text{dom}(V_{t+1})$ such that we have

$$\mathcal{B}_{t}\left(\phi+\lambda+\delta_{K_{t+1}}\right)\leq\mathcal{B}_{t}\left(\phi+\lambda\right)+\delta K_{t}.$$

• Additively subhomogeneous operators: for every compact set K_t , there exists $M_t > 0$ s.t. for every constant function λ and every function $\phi \in \mathbb{F}_{t+1}$, we have

$$\mathcal{B}_{t}\left(\phi+\lambda\right)+\delta K_{t}\leq \mathcal{B}_{t}\left(\phi\right)+\lambda M_{t}+\delta K_{t}.$$

Fix an integer $N \ge 2$, set $v_i = \beta + i\frac{\gamma-\beta}{N-1}$ for every $0 \le i \le N-1$ and set $\mathbb{V} := \{v_0, v_1, \dots, v_{N-1}\}$. We define the following unconstrained switched multistage linear quadratic problem:

$$\begin{split} \min_{\substack{\mathbf{x}\in\mathbb{X}^{T}\\(u,v)\in(\mathbb{U}\times\mathbb{V})^{T-1}}} \sum_{t=0}^{T-1} c_{t}^{\mathbf{V}_{t}}(\mathbf{x}_{t},u_{t}) + \psi(\mathbf{x}_{T}) \\ \text{s.t.} &\begin{cases} x_{0}\in\mathbb{X} \text{ is given,} \\ \forall t\in\llbracket 0,T-1\rrbracket, \ \mathbf{x}_{t+1}=f_{t}^{\mathbf{V}_{t}}(\mathbf{x}_{t},u_{t}) \\ \forall t\in\llbracket 0,T-1\rrbracket, \ \mathbf{v}_{t}\in\mathbb{V}, \end{cases} \end{split}$$

Homogeneization

Define the homogeneized costs and dynamics

$$\tilde{f}_t^{v}(x, y, u) = \begin{pmatrix} A_t & vb_t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} B_t \\ 0 \end{pmatrix} u,$$
$$\tilde{c}_t^{v}(x, y, u) = \begin{pmatrix} x \\ y \end{pmatrix}^T \begin{pmatrix} C_t & 0 \\ 0 & v^2 d_t \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + u^T D_t u,$$

Unconstrained 2-homogeneous MCP

$$\min_{\substack{(x,y)\in(\mathbb{X}\times\mathbb{R})^{T}\\(u,v)\in(\mathbb{U}\times\mathbb{V})^{T-1}}} \sum_{t=0}^{T-1} \tilde{c}_{t}^{v_{t}}(x_{t},y_{t},u_{t}) + \widetilde{\psi}(x_{T},y_{T})$$

s.t.
$$\begin{cases} (x_{0},y_{0}) \in \mathbb{X} \times \mathbb{R} \text{ is given,} \\ \forall t \in \llbracket 0, T-1 \rrbracket, \ (x_{t+1},y_{t+1}) = \widetilde{f}_{t}^{v_{t}}(x_{t},y_{t},u_{t}) . \end{cases}$$

Numerical illustration on a toy example: time spent

- When the system does not often switch, the Min-plus part is fast. The more the system switches, the more the Min-plus algorithm is time consuming.
- SDDP is not affected by the switching aspect.

Multistage Stochastic Convex Programming (MSCP)

MSCP can be solved by Dynamic Programming

$$\min_{(\mathbf{X},\mathbf{U})} \mathbb{E} \left[\sum_{t=0}^{T-1} c_t \left(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1} \right) + \psi \left(\mathbf{X}_T \right) \right]$$

s.t. $\forall t \in \llbracket 0, T-1 \rrbracket$
 $\mathbf{X}_{t+1} = f_t \left(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1} \right), \mathbf{X}_0 \text{ given}$
 $\sigma \left(\mathbf{U}_t \right) \subset \sigma \left(\mathbf{W}_0, \dots, \mathbf{W}_{t+1} \right)$

where the noise process $(W_t)_{t \in [\![1,T]\!]}$ is an independent sequence of random variables of finite supports

$$\begin{split} \tilde{\mathcal{B}}_{t}\left(\phi\right)\left(x,w\right) &= \min_{u} c_{t}\left(x,u,w\right) + \phi\left(f_{t}\left(x,u,w\right)\right) \\ \mathcal{B}_{t}\left(\phi\right)\left(x\right) &= \mathbb{E}\left[\tilde{\mathcal{B}}_{t}\left(x,\mathsf{W}_{\mathsf{t+1}}\right)\right] \end{split}$$

Input: $(\overline{V}_t^k)_t$ and $(\underline{V}_t^k)_t$ upper and lower current approximations generated by TDP given a Multistage stochastic convex optimization problem

Input: $(\overline{V}_t^k)_t$ and $(\underline{V}_t^k)_t$ upper and lower current approximations generated by TDP given a Multistage stochastic convex optimization problem

We construct a deterministic trajectory $(x_t^k)_{t \in [0,T]}$, optimal (in the sense introduced beforehand) for the current approximations.

Input: $(\overline{V}_t^k)_t$ and $(\underline{V}_t^k)_t$ upper and lower current approximations generated by TDP given a Multistage stochastic convex optimization problem

We construct a deterministic trajectory $(x_t^k)_{t \in [0,T]}$, optimal (in the sense introduced beforehand) for the current approximations.

• Set
$$x_0^k := x_0$$

Input: $(\overline{V}_t^k)_t$ and $(\underline{V}_t^k)_t$ upper and lower current approximations generated by TDP given a Multistage stochastic convex optimization problem

We construct a deterministic trajectory $(x_t^k)_{t \in [\![0,T]\!]}$, optimal (in the sense introduced beforehand) for the current approximations.

- Set $x_0^k := x_0$
- For each noise w, compute an optimal control $u_t^k(w)$ to apply at x_t^k for the lower current approximation \underline{V}_t^k

Input: $(\overline{V}_t^k)_t$ and $(\underline{V}_t^k)_t$ upper and lower current approximations generated by TDP given a Multistage stochastic convex optimization problem

We construct a deterministic trajectory $(x_t^k)_{t \in [\![0,T]\!]}$, optimal (in the sense introduced beforehand) for the current approximations.

Forward in time

• Set
$$x_0^k := x_0$$

• For each noise w, compute an optimal control $u_t^k(w)$ to apply at x_t^k for the lower current approximation \underline{V}_t^k

• Find a noise
$$w_{t+1}^k$$
 which maximises
 $\arg \max_{w} \left(\overline{V}_{t+1}^k - \underline{V}_{t+1}^k \right) \left(f_t \left(x_t^k, u_t^k \left(w \right), w \right) \right)$

Input: $(\overline{V}_t^k)_t$ and $(\underline{V}_t^k)_t$ upper and lower current approximations generated by TDP given a Multistage stochastic convex optimization problem

We construct a deterministic trajectory $(x_t^k)_{t \in [\![0,T]\!]}$, optimal (in the sense introduced beforehand) for the current approximations.

- Set $x_0^k := x_0$
- For each noise w, compute an optimal control $u_t^k(w)$ to apply at x_t^k for the lower current approximation \underline{V}_t^k
- Find a noise w_{t+1}^k which maximises $\arg \max_{w} \left(\overline{V}_{t+1}^k - \underline{V}_{t+1}^k \right) \left(f_t \left(x_t^k, u_t^k \left(w \right), w \right) \right)$
- Set $x_{t+1}^k := f_t \left(x_t^k, u_t^k \left(w_t^k \right), w_t^k \right)$ and iterate

Denote by $(x_t^k)_{t \in [\![0,T]\!]}$ the deterministic current optimal trajectory of Baucke-Downward-Zackeri

Denote by $(x_t^k)_{t \in [\![0,T]\!]}$ the deterministic current optimal trajectory of Baucke-Downward-Zackeri

Backward in time

• Compute a new upper basic function $\overline{\phi}$ by evaluating a selection function at $\overline{\Phi}_{t+1}^{k+1}$ and x_t^k

Denote by $(x_t^k)_{t \in [\![0,T]\!]}$ the deterministic current optimal trajectory of Baucke-Downward-Zackeri

- Compute a new upper basic function $\overline{\phi}$ by evaluating a selection function at $\overline{\Phi}_{t+1}^{k+1}$ and x_t^k
- Add the new basic function $\underline{\phi}$ to the current collection of upper basic functions $\overline{\Phi}_t^{k+1} = \overline{\Phi}_t^k \cup \{\overline{\phi}\}$

Denote by $(x_t^k)_{t \in [\![0,T]\!]}$ the deterministic current optimal trajectory of Baucke-Downward-Zackeri

- Compute a new upper basic function $\overline{\phi}$ by evaluating a selection function at $\overline{\Phi}_{t+1}^{k+1}$ and x_t^k
- Add the new basic function $\underline{\phi}$ to the current collection of upper basic functions $\overline{\Phi}_t^{k+1} = \overline{\Phi}_t^k \cup \{\overline{\phi}\}$
- Compute a new lower basic function $\underline{\phi}$ by evaluating a selection function at $\underline{\Phi}_{t+1}^{k+1}$ and x_t^k

Denote by $(x_t^k)_{t \in [\![0,T]\!]}$ the deterministic current optimal trajectory of Baucke-Downward-Zackeri

- Compute a new upper basic function $\overline{\phi}$ by evaluating a selection function at $\overline{\Phi}_{t+1}^{k+1}$ and x_t^k
- Add the new basic function $\underline{\phi}$ to the current collection of upper basic functions $\overline{\Phi}_t^{k+1} = \overline{\Phi}_t^k \cup \{\overline{\phi}\}$
- Compute a new lower basic function $\underline{\phi}$ by evaluating a selection function at $\underline{\Phi}_{t+1}^{k+1}$ and x_t^k
- Add the new basic function $\underline{\phi}$ to the current collection of lower basic functions $\underline{\Phi}_t^{k+1} = \underline{\Phi}_t^k \cup \{\underline{\phi}\}$