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Dynamic Programming and Bellman operators

Given an integer T > 0, consider the Dynamic Programming
equations

Vr =
YVt e |]:07 T— 1]], Vi = Bt(vt—H)
where
- Vs a function called the final cost function
- B¢ is an operator called the Bellman operator

- V; is called the value function at time t € [0, T]

- We want to compute Vy (Xp) at some given state xo
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Multistage Stochastic Convex Programming (MSCP)

MSCP can be solved by Dynamic Programming

min E
(X,0)

T-1
D e (Xe, Up, Weyr) + ¢ (XT)]
t=0

st.vt e [0,T —1]
Xt = ft (Xt, U, Wepq) , Xo given
o (Ut) C o (Wo,..., W)

where the noise process (W), 1 Is @an independent
sequence of random variables of finite supports
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t=0

st.vt e [0,T —1]
Xt = ft (Xt, U, Wepq) , Xo given
o (Ut) C o (Wo,..., W)

where the noise process (W), 1 Is @an independent
sequence of random variables of finite supports

By () (X, w) = miny ¢t (x, U, w) + o (f; (X, u, w))

Bt (¢) (x) = E [Bt (x, Wet1)]
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What we will do

Build an algorithm that builds approximations of the value
functions V; based on properties of the Bellman operators B;
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What we will do

Build an algorithm that builds approximations of the value
functions V; based on properties of the Bellman operators B;

It must generalize existing convergence result of SDDP
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Overview of our algorithm

1
I
1
1
1

Lower approximations ﬁ’? as a supremum of basic functions

(affine functions for SDDP) below V;
Upper approximations Vtk as an infimum of some other basic

functions (quadratic functions for Min-Plus) above V;
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1. Tropical Dynamic Programming (TDP): an algorithm
encompassing both SDDP and a Min-Plus algorithm

2. Convergence result of TDP

3. Converging upper and lower approximations for Multistage
Stochastic Convex Programming
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Section content

1. Tropical Dynamic Programming (TDP): an algorithm
encompassing both SDDP and a Min-Plus algorithm

11 Trial points and selection functions

1.2 Tropical Dynamic Programming (TDP)
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Trial points and selection functions: SDDP exemple

SDDP (@ k-1
Pt (@41 2t7")

SDDP Exemple

- Affine functions

- Lower
approximations
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Trial points and selection functions: Min-Plus exemple

Min-Plus Exemple

- Quadratic
functions

+ Upper
approximations
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Tight and Valid selection functions

Tightness Assumption

Selection function /Basic functions Trial point
SDDP R R—1 R—1 R R—1
ox (LA (X ) = B <Vt+1) (Xt >

Basic function

It is a local property.
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Tight and Valid selection functions

Tightness Assumption

Selection function /Basic functions Trial point
SDDP R k—1 k=1 k-1
ox (LA (X ) = B <Vt+1) ( >

Basic function

It is a local property.
Validity Assumption
e (¢t+1»xt ) < Bt (Vt+1) (SDDP)  opt = sup
Min-Plus (Eﬁhxt ) > By (vm) (Min-Plus) opt = inf

It is a global property.
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Tropical Dynamic Programming (TDP)

Scheme of the algorithm

1. Initialize the approximations to infinity.
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also given a probability law p* over the states.
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Tropical Dynamic Programming (TDP)

Scheme of the algorithm

1. Initialize the approximations to infinity.

2. Input: Given a current set of basic functions @, build the
current approximation x — VE(x) := OPt ot ©(x). We are
also given a probability law p* over the states.

3. “Forward phase”: draw new trial points according to p*.

4. Backward phase: backward in time, evaluate the selection
function at ®%_; and the trial point x{, which gives a new
basic function ¢ that is added to the current set of
approximations

oft = of U {p}.
5. Update: knowing the updated set of approximations

((Df“) an Oracle computes a new probability law gf*.
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Section content

2. Convergence result of TDP
21 Almost sure uniform convergence to a limit V{
2.2 Optimal sets: the trial points need to be rich enough

2.3 Deterministic linear-quadratic optimal control with one
constrained control

24 Numerical illustration on a toy example
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Almost sure uniform convergence to a limit V;

Under mild technical assumptions on the Bellman operators
B, we have

Existence of an approximating limit

Let t € [0, T] be fixed. The sequence of functions (V§)
generated by TDP p-a.s. converges uniformly on every
compact set included in the domain of V; to a function V;.

ReN
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Almost sure uniform convergence to a limit V;

Under mild technical assumptions on the Bellman operators
B, we have

Existence of an approximating limit

Let t € [0, T] be fixed. The sequence of functions (V§),
generated by TDP p-a.s. converges uniformly on every
compact set included in the domain of V; to a function V;.

Is V¥ equal to V; ?
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Optimal sets: the trial points need to be rich enough

Optimal sets
Let (@t)teﬂo,rﬂ be T 4+ 1 functions on X. A sequence of sets
(Xt)te[[o,r]] is said to be if foreveryt e [0,T —1]

Bt (¢t41 + 0xea) + Ox = Bt (pr41) + Ox,.
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Optimal sets: the trial points need to be rich enough

Optimal sets
Let (@t)teﬂo,rﬂ be T 4+ 1 functions on X. A sequence of sets
(Xt)te[[o,r]] is said to be if foreveryt e [0,T —1]

Bt (¢t41 + 0xea) + Ox = Bt (pr41) + Ox,.

In order to compute B; (pr41) restricted to X;, one only needs
to know ¢y restricted to Xiq.

1/18



V¢ is almost surely equal to V; on a set of interest

Almost surely, the approximations (Vtk);? converges uniformly
to V¥, which is equal to V; on a set of interest

Convergence of TDP [ACT18]

Define , for every time t € [0, T].
Assume that, p-a.s the sets (K{),cpo 77 are

- (Vt)-optimal if opt = inf,
- (VF)-optimal if opt = sup.

Then, u-a.s. for every t € [0, T] the function
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V¢ is almost surely equal to V; on a set of interest

Almost surely, the approximations (Vtk);? converges uniformly
to V¥, which is equal to V; on a set of interest

Convergence of TDP [ACT18]
Define , for every time t € [0, T].
Assume that, p-a.s the sets (K{),cpo 77 are

- (Vt)-optimal if opt = inf,

- (VF)-optimal if opt = sup.

Then, u-a.s. for every t € [0, T] the function

This is the usual convergence result for SDDP, new for a

Min-Plus method
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Rough scheme of the proof, details in [ACT18]

. (\/f)/g converges uniformly to V¥ on every compact in the
domain of V; by Arzela-Ascoli theorem

'resp. (V¢)-optimality of (K;"), when opt = inf
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Rough scheme of the proof, details in [ACT18]

. (\/g*)/g converges uniformly to V¥ on every compact in the
domain of V; by Arzela-Ascoli theorem

- (Vf), satisfies a system of restricted Bellman Equations on
the sets (K{):

VT + 0k = 9 + ok: ()
vt e [0,T —1], Bt (Vi) + 0k = V§ + bk

- If the sets (K?), are (V;)-optimal when opt = sup ',
satisfying (1) is enough to ensure that V¥ = V; over K}

'resp. (V¢)-optimality of (K;"), when opt = inf
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Deterministic linear-quadratic optimal control with one con-

strained control

Let 8, be such that g < v, we study the following Multistage
convex optimization problem involving a constraint on one of
the controls denoted by v:

T—1
min ZCt(Xt,Uth) + (x7)
X:(X07"'7XT) t=0

u=(Ug;---,ur—1)
V=(V0,---,V7 1)

Xo € X is given,
st. q vt € [0,T — 1], Xer = fi(xe, Ut, i)
vt e [[Oa T— 1]]7 (Ut, VT) € Ux [f Ae‘]?
where f; is linear, ¢; and 4 are convex quadratic.
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Numerical illustration on a toy example: converging gap

The gap between upper and lower approximations converge to
0 along the current optimal trajectories of SDDP.

lteration 7, N =5 lteration 18, N =5 Iteration 40, N = 5

+ Plots of (Vf —Mf) (xF) with t in abscisses
- After 7 iterations (left), 18 iterations (middle) and 40
iterations (right)
- It is not straightforward to use a Min-Plus algorithm here,
see [ACTon] 15/18



Section content

3. Converging upper and lower approximations for Multistage
Stochastic Convex Programming

31 Upper and lower approximations may converge on
different points

3.2 Converging upper and lower approximations along current
optimal trajectories
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Upper and lower approximations may converge on different

points

We can either build upper approximations or lower
approximations using TDP but...

Upper and lower approximations may converge on different
points

How to make upper and lower approximations converge on
the same points
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Converging upper and lower approximations along current op-

timal trajectories

-+ In MSCPs, build a deterministic optimal trajectory for the
lower approximations (“Problem-Child” method of Baucke,
Downward and Zackeri) from a deterministic criterium
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lower approximations (“Problem-Child” method of Baucke,
Downward and Zackeri) from a deterministic criterium
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upper approximations and lower approximations
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Converging upper and lower approximations along current op-

timal trajectories

- In MSCPs, build a optimal trajectory for the
lower approximations (“Problem-Child” method of Baucke,
Downward and Zackeri) from a deterministic criterium

- Use this deterministic trajectory as trial points for
upper approximations and lower approximations

Converging upper and lower approximations along current
optimal trajectories. (Work in progress)
On every accumulation point x;{ of the deterministic current

optimal trajectories (x¥) we have that

VE(xp) = Ve () = V{ ()
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- Devised an algorithm that encompases both SDDP and a
Min-Plus method
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- Devised an algorithm that encompases both SDDP and a
Min-Plus method

- It is based on properties of the Bellman operators

- Convergence result identical to the SDDP litterature, new
for the Min-Plus method (and maybe others)

- Basic functions added at each step have to be tight and
valid

- Trial points have to be “rich enough”: either Vs-optimal
(for upper approximations) or V;-optimal (for lower
approximations) is sufficent

- One can use the optimal trajectories of lower
approximations (SDDP) in order to build upper
approximations (Min-Plus) and get exact converging upper
and lower bounds 18/18
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Additional notations

- opt an operation that is either the pointwise infimum or
the pointwise supremum of functions.

- R the extended reals endowed with the operations
+00 + (—00) = —00 + 00 = +o00.

- For every t € [0, T], fix F; and F; two subsets of (@)X the
set of functions on X such that F; C F;.

- Afunction ¢ is a basic function if ¢ € F; for some t € [0, T].

- For every set X C X, denote by dx the function equal to 0
on X and +oo elsewhere.

- For every t € [0, T] and every set of basic functions
®; C Ft, we denote by Ve, its pointwise optimum,
Vo, := 0ptyco, ¢, Le.

qut X — @
X +— opt{p(x)|p € P}



Structural assumptions i

- Common regularity: for every t € [0, T], there exists a
common (local) modulus of continuity of all ¢ € IF;.

- Final condition: for some &7 of Fr, ¢ := Ve,.

- Stability by the Bellman operators: if ¢ € Fii4, then B ()
belongs to F;.

- Stability by pointwise optimum: if ®; C F; then Vo, € Ft.

- Stability by pointwise convergence: if (ap}?)keN C Iy
converges pointwise to ¢ on the domain of V¢, then ¢ € Fy.

- Order preserving operators: ¢ < ¢ implies B; (¢) < B: (¢).

+ Existence of the value functions: the solution (Vt)icpo 1y
exist and each V; is proper.



Structural assumptions ii

- Existence of optimal sets: for every compact set
Ki € dom (V;), for every function ¢ € Fry1 and constant
A € R, there exists a compact set Ki1q € dom (V¢41) such
that we have

Be (04 A+ 0kyy) < Bi (o4 A) + K.

- Additively subhomogeneous operators: for every
compact set K;, there exists M; > 0 s.t. for every constant
function X and every function ¢ € Fyq, we have

B (QO + /\) + 0K < Bt (go) + MMt + 0Ks.



SDDP selection function

We define SDDP selection function through the following QP
b= miQ [ce (X' u,v) + Al
'e
(uV)EUX[B,9]
AeR

st X =

Tl (X u,v) <A Vped .
Denote by b its optimal value and by a a Lagrange multiplier of
the constraint X’ — x = 0 at the optimum

0P (&,x) =X — (a,X —x)+b .

Finally, at time t = T, for any ® c F2PPP and x € X, fix
a € 9Vr(x) and define

3PP (&, x) := X' = (a, X' — x) + V7 (x).



Discretization of the constrained control

Fix an integer N > 2, setv; = 8 + i% forevery0 <i<N-1
and set V := {vp,vy,...vy_1}. We define the following
unconstrained switched multistage linear quadratic problem:

T—1
min Z ¢/ (X, Ut) 4 9 (xT)
xex’ =0

(u,v)e(UxV)
Xo € X is given,
st SVt e [0, T —1], xep1 = f" (X, Ur)
vte [0, T —1], i €V,



Homogeneization

Define the homogeneized costs and dynamics

fi' (x,y,u) = @t V?) (;) - (it> u,
X ! @ 0 X
& (X, Y, u) = <y> (Ot v2dt> (y) + u'Dyu,

Unconstrained 2-homogeneous MCP

T-1
. GVi(x , Vi, Ut) + o X7,
(Xay)ren(lsng)T ; t ( t Yt t) q/;( T yT)

(uyv)e(Uxv) =1
{(xo,yo) € X x R is given,
s.t. -
Wt e 0,7 =10, (Kewt, Vewr) = fo (e, Vi, Ut) -



Min-Plus selection function

We define the selection function mem plus

given ¢ C Ft”]r'? PUS and (x,y) € X x R,

as follows. For any

MY (o X, y) = BY ()

for some (v,¢) € argmin B/ () (x,y) .
(v,p)EVx & ——
— —,—— trial point

Best image of current approximation at trial point

Moreover, at time t = T, for any & ¢ FI'""P¥* and (x,y) € X x R,
we set

PP (0, x,y) = P(X,¥) = Y(X).



Numerical results on a toy example: time spent

Cummulative time spent (s)

Cummulative time spent (5)
Cummulative time spent (s)

Time spent for the first example (left) and the second example
when N = 50 (middle) and N = 200 (right).



Multistage Stochastic Convex Programming (MSCP)

MSCP can be solved by Dynamic Programming

min E
(X,U)

T—1
> ¢t (X, Up, Wepa) + 0 (XT)]
t=0

st.Vt e [0,T — 1]
Xt = ft (Xt, U, Wipq) , Xo given
o (Ut) C o (Wo,..., W)

where the noise process (Wt)cp 7 is an independent
sequence of random variables of finite supports

By () (X, w) = miny ¢t (X, U, w) + o (f; (X, u, w))

Bi(¢) (x) =E [Bt (X, Wey1)]



Current optimal trajectories of Baucke-Downward-Zackeri

Input: (Vf)t and (yf)t upper and lower current
approximations generated by TDP given a Multistage stochastic
convex optimization problem
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Forward in time
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- For each noise w, compute an optimal control uf (w) to
apply at xF for the lower current approximation V¥



Current optimal trajectories of Baucke-Downward-Zackeri

Input: (Vf)t and (yf)t upper and lower current

approximations generated by TDP given a Multistage stochastic
convex optimization problem

We construct a deterministic trajectory (xf)te[[0 -
the sense introduced beforehand) for the current
approximations.

optimal (in

Forward in time

- Set xf 1= xo

- For each noise w, compute an optimal control uf (w) to
apply at xF for the lower current approximation V¥

- Find a noise wf, ; which maximises

—k
arg max,, (Vt+1 - Mﬁrw) (f (Xfa ug (w), w))



Current optimal trajectories of Baucke-Downward-Zackeri

Input: (Vf)t and (yf)t upper and lower current
approximations generated by TDP given a Multistage stochastic
convex optimization problem

We construct a deterministic trajectory (xf)te[[0 o optimal (in
the sense introduced beforehand) for the current

approximations.
Forward in time

- Set xf 1= xo

- For each noise w, compute an optimal control uf (w) to
apply at xF for the lower current approximation V¥

- Find a noise wf, ; which maximises
arg max,, (Ve — Vi) (Fe (X, uf (w),w))

- Setxf g = fi (X, uf (wf) ,wE) and iterate



Using the optimal trajectories of lower approximations (SDDP)

as trial points for upper approximations (Min-Plus)

Denote by (xf’)te[[O rj the deterministic current optimal
trajectory of Baucke-Downward-Zackeri

Backward in time



Using the optimal trajectories of lower approximations (SDDP)
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Using the optimal trajectories of lower approximations (SDDP)

as trial points for upper approximations (Min-Plus)

Denote by (xf’)te[[O rj the deterministic current optimal
trajectory of Baucke-Downward-Zackeri

Backward in time

- Compute a new upper basic function @ by evaluating a
selection function at &7, and xf

- Add the new basic function ¢ to the current collection of
upper basic functions 65“ = 6’; U {®}

- Compute a new lower basic function ¢ by evaluating a

selection function at &7 and xf



Using the optimal trajectories of lower approximations (SDDP)

as trial points for upper approximations (Min-Plus)

Denote by (xf’)te[[O rj the deterministic current optimal
trajectory of Baucke-Downward-Zackeri

Backward in time

- Compute a new upper basic function @ by evaluating a
selection function at &7, and xf

- Add the new basic function ¢ to the current collection of
upper basic functions 65“ = 6’; U {®}

- Compute a new lower basic function ¢ by evaluating a
selection function at &7 and xf

- Add the new basic function ¢ to the current collection of
lower basic functions ®f*" = of U {p}



	Dynamic Programming and Bellman operators
	Multistage Stochastic Convex Programming (MSCP)
	Overview of our algorithm
	Tropical Dynamic Programming (TDP): an algorithm encompassing both SDDP and a Min-Plus algorithm
	Trial points and selection functions
	Tropical Dynamic Programming (TDP)

	Convergence result of TDP
	Almost sure uniform convergence to a limit Vt*
	Optimal sets: the trial points need to be rich enough
	Deterministic linear-quadratic optimal control with one constrained control
	Numerical illustration on a toy example

	Converging upper and lower approximations for Multistage Stochastic Convex Programming
	Upper and lower approximations may converge on different points
	Converging upper and lower approximations along current optimal trajectories

	Appendix
	SDDP selection function
	Discretization of the constrained control
	Homogeneization
	Min-Plus selection function
	Using the optimal trajectories of lower approximations (SDDP) as trial points for upper approximations (Min-Plus)



