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Dynamic Programming and Bellman operators

Given an integer T > 0, consider the Dynamic Programming
equations {

VT = ψ

∀t ∈ [[0, T − 1]], Vt = Bt(Vt+1)

where

• Ψ is a function called the final cost function
• Bt is an operator called the Bellman operator
• Vt is called the value function at time t ∈ [[0, T]]
• We want to compute V0 (x0) at some given state x0
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Multistage Stochastic Convex Programming (MSCP)

MSCP can be solved by Dynamic Programming

min
(X,U)

E

[T−1∑
t=0

ct (Xt,Ut,Wt+1) + ψ (XT)
]

s.t. ∀t ∈ [[0, T − 1]]
Xt+1 = ft (Xt,Ut,Wt+1) , X0 given
σ (Ut) ⊂ σ (W0, . . . ,Wt+1)

where the noise process (Wt)t∈[[1,T]] is an independent
sequence of random variables of finite supports

B̃t (ϕ) (x,w) = minu ct (x,u,w) + ϕ (ft (x,u,w))
Bt (ϕ) (x) = E

[
B̃t (x,Wt+1)

]
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What we will do

Build an algorithm that builds approximations of the value
functions Vt based on properties of the Bellman operators Bt

It must generalize existing convergence result of SDDP
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Overview of our algorithm

Lower approximations Vtk as a supremum of basic functions
(affine functions for SDDP) below Vt
Upper approximations Vt

k as an infimum of some other basic
functions (quadratic functions for Min-Plus) above Vt
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Outline

1. Tropical Dynamic Programming (TDP): an algorithm
encompassing both SDDP and a Min-Plus algorithm

2. Convergence result of TDP

3. Converging upper and lower approximations for Multistage
Stochastic Convex Programming
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Section content

1. Tropical Dynamic Programming (TDP): an algorithm
encompassing both SDDP and a Min-Plus algorithm

1.1 Trial points and selection functions

1.2 Tropical Dynamic Programming (TDP)
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Trial points and selection functions: SDDP exemple

SDDP Exemple

• Affine functions
• Lower
approximations
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Trial points and selection functions: Min-Plus exemple

Min-Plus Exemple

• Quadratic
functions

• Upper
approximations

7/18



Tight and Valid selection functions

Tightness Assumption
Selection function︷ ︸︸ ︷

φSDDPt


Basic functions︷︸︸︷

Φkt+1 , xk−1t


︸ ︷︷ ︸

Basic function

(

Trial point︷︸︸︷
xk−1t ) = Bt

(
Vkt+1

)(
xk−1t

)

It is a local property.

Validity Assumption

φSDDPt

(
Φkt+1, xk−1t

)
≤ Bt

(
Vkt+1

)
(SDDP) opt = sup

φMin-Plust

(
Φ
k
t+1, xk−1t

)
≥ Bt

(
Vkt+1

)
(Min-Plus) opt = inf

It is a global property

.
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Tropical Dynamic Programming (TDP)

Scheme of the algorithm

1. Initialize the approximations to infinity.

2. Input: Given a current set of basic functions Φkt , build the
current approximation x 7→ Vkt (x) := optϕ∈Φk

t
ϕ(x). We are

also given a probability law µk over the states.
3. “Forward phase”: draw new trial points according to µk.
4. Backward phase: backward in time, evaluate the selection
function at Φkt+1 and the trial point xkt , which gives a new
basic function ϕ that is added to the current set of
approximations

Φk+1t = Φkt ∪ {ϕ} .

5. Update: knowing the updated set of approximations(
Φk+1t

)
t
an Oracle computes a new probability law µk+1.
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Section content

2. Convergence result of TDP

2.1 Almost sure uniform convergence to a limit V∗t
2.2 Optimal sets: the trial points need to be rich enough

2.3 Deterministic linear-quadratic optimal control with one
constrained control

2.4 Numerical illustration on a toy example
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Almost sure uniform convergence to a limit V∗
t

Under mild technical assumptions on the Bellman operators
Bt, we have

Existence of an approximating limit
Let t ∈ [[0, T]] be fixed. The sequence of functions

(
Vkt
)
k∈N

generated by TDP µ-a.s. converges uniformly on every
compact set included in the domain of Vt to a function V∗t .

Is V∗
t equal to Vt ?
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Optimal sets: the trial points need to be rich enough

Optimal sets
Let (ϕt)t∈[[0,T]] be T + 1 functions on X. A sequence of sets
(Xt)t∈[[0,T]] is said to be (ϕt)-optimal if for every t ∈ [[0, T − 1]]

Bt
(
ϕt+1 + δXt+1

)
+ δXt = Bt (ϕt+1) + δXt .

jj kk ll mm

In order to compute Bt (ϕt+1) restricted to Xt, one only needs
to know ϕt+1 restricted to Xt+1.
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V∗
t is almost surely equal to Vt on a set of interest

Almost surely, the approximations
(
Vkt
)
k converges uniformly

to V∗t , which is equal to Vt on a set of interest

Convergence of TDP [ACT18]
Define K∗t := lim supk supp

(
µkt
)
, for every time t ∈ [[0, T]].

Assume that, µ-a.s the sets (K∗t )t∈[[0,T]] are

• (Vt)-optimal if opt = inf ,
• (V∗t )-optimal if opt = sup.

Then, µ-a.s. for every t ∈ [[0, T]] the function V∗t is equal to the
value function Vt on K∗t .

This is the usual convergence result for SDDP, new for a
Min-Plus method
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Rough scheme of the proof, details in [ACT18]

•
(
Vkt
)
k converges uniformly to V

∗
t on every compact in the

domain of Vt by Arzela-Ascoli theorem

• (V∗t )t satisfies a system of restricted Bellman Equations on
the sets (K∗t ):{

V∗T + δK∗T = ψ + δK∗T

∀t ∈ [[0, T − 1]], Bt
(
V∗t+1

)
+ δK∗t = V∗t + δK∗t

(1)

• If the sets (K∗t )t are (V∗t )-optimal when opt = sup 1,
satisfying (1) is enough to ensure that V∗t = Vt over K∗t

1resp. (Vt)-optimality of (K∗
t )t when opt = inf
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Deterministic linear-quadratic optimal control with one con-
strained control

Let β, γ be such that β < γ, we study the following Multistage
convex optimization problem involving a constraint on one of
the controls denoted by v:

min
x=(x0,...,xT)

u=(u0,...,uT−1)
v=(v0,...,vT−1)

T−1∑
t=0

ct(xt,ut, vt) + ψ(xT)

s.t.


x0 ∈ X is given,
∀t ∈ [[0, T − 1]], xt+1 = ft(xt,ut, vt)
∀t ∈ [[0, T − 1]], (ut, vt) ∈ U× [β, γ],

where ft is linear, ct and ψ are convex quadratic.
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Numerical illustration on a toy example: converging gap

The gap between upper and lower approximations converge to
0 along the current optimal trajectories of SDDP.
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• Plots of
(
Vkt − Vkt

) (
xkt
)
with t in abscisses

• After 7 iterations (left), 18 iterations (middle) and 40
iterations (right)

• It is not straightforward to use a Min-Plus algorithm here,
see [ACTon] 15/18



Section content

3. Converging upper and lower approximations for Multistage
Stochastic Convex Programming

3.1 Upper and lower approximations may converge on
different points

3.2 Converging upper and lower approximations along current
optimal trajectories
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Upper and lower approximations may converge on different
points

We can either build upper approximations or lower
approximations using TDP but...

Upper and lower approximations may converge on different
points

How to make upper and lower approximations converge on
the same points
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Converging upper and lower approximations along current op-
timal trajectories

• In MSCPs, build a deterministic optimal trajectory for the
lower approximations (“Problem-Child” method of Baucke,
Downward and Zackeri) from a deterministic criterium

• Use this deterministic trajectory as trial points for both
upper approximations and lower approximations

Converging upper and lower approximations along current
optimal trajectories. (Work in progress)
On every accumulation point x∗t of the deterministic current
optimal trajectories

(
xkt
)
we have that

Vkt (x∗t ) = Vt (x∗t ) = Vkt (x∗t )
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Summary

• Devised an algorithm that encompases both SDDP and a
Min-Plus method

• It is based on properties of the Bellman operators
• Convergence result identical to the SDDP litterature, new
for the Min-Plus method (and maybe others)

• Basic functions added at each step have to be tight and
valid

• Trial points have to be “rich enough”: either Vt-optimal
(for upper approximations) or V∗t -optimal (for lower
approximations) is sufficent

• One can use the optimal trajectories of lower
approximations (SDDP) in order to build upper
approximations (Min-Plus) and get exact converging upper
and lower bounds

18/18
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Additional notations

• opt an operation that is either the pointwise infimum or
the pointwise supremum of functions.

• R the extended reals endowed with the operations
+∞+ (−∞) = −∞+∞ = +∞.

• For every t ∈ [[0, T]], fix Ft and Ft two subsets of
(
R
)X the

set of functions on X such that Ft ⊂ Ft.
• A function ϕ is a basic function if ϕ ∈ Ft for some t ∈ [[0, T]].
• For every set X ⊂ X, denote by δX the function equal to 0
on X and +∞ elsewhere.

• For every t ∈ [[0, T]] and every set of basic functions
Φt ⊂ Ft, we denote by VΦt its pointwise optimum,
VΦt := optϕ∈Φt ϕ, i.e.

VΦt : X −→ R
x 7−→ opt {ϕ(x) | ϕ ∈ Φt} .

(2)



Structural assumptions i

• Common regularity: for every t ∈ [[0, T]], there exists a
common (local) modulus of continuity of all ϕ ∈ Ft.

• Final condition: for some ΦT of FT , ψ := VΦT .
• Stability by the Bellman operators: if ϕ ∈ Ft+1, then Bt (ϕ)
belongs to Ft.

• Stability by pointwise optimum: if Φt ⊂ Ft then VΦt ∈ Ft.
• Stability by pointwise convergence: if

(
ϕk
)
k∈N ⊂ Ft

converges pointwise to ϕ on the domain of Vt, then ϕ ∈ Ft.
• Order preserving operators: φ ≤ ϕ implies Bt (φ) ≤ Bt (ϕ).
• Existence of the value functions: the solution (Vt)t∈[[0,T]]
exist and each Vt is proper.



Structural assumptions ii

• Existence of optimal sets: for every compact set
Kt ⊂ dom (Vt), for every function ϕ ∈ Ft+1 and constant
λ ∈ R, there exists a compact set Kt+1 ⊂ dom (Vt+1) such
that we have

Bt
(
ϕ+ λ+ δKt+1

)
≤ Bt (ϕ+ λ) + δKt.

• Additively subhomogeneous operators: for every
compact set Kt, there exists Mt > 0 s.t. for every constant
function λ and every function ϕ ∈ Ft+1, we have

Bt (ϕ+ λ) + δKt ≤ Bt (ϕ) + λMt + δKt.



SDDP selection function

We define SDDP selection function through the following QP

b = min
x′∈X

(u,v)∈U×[β,γ]
λ∈R

[
ct
(
x′,u, v

)
+ λ
]

s.t.
{
x′ = x
ϕ (ft (x′,u, v)) ≤ λ ∀ϕ ∈ Φ .

Denote by b its optimal value and by a a Lagrange multiplier of
the constraint x′ − x = 0 at the optimum

ϕSDDPt (Φ, x) := x′ 7→ 〈a, x′ − x〉+ b .

Finally, at time t = T , for any Φ ⊂ FSDDPT and x ∈ X, fix
a ∈ ∂VT(x) and define

ϕSDDPT (Φ, x) := x′ 7→ 〈a, x′ − x〉+ VT (x) .



Discretization of the constrained control

Fix an integer N ≥ 2, set vi = β + iγ−β
N−1 for every 0 ≤ i ≤ N− 1

and set V := {v0, v1, . . . vN−1}. We define the following
unconstrained switched multistage linear quadratic problem:

min
x∈XT

(u,v)∈(U×V)T−1

T−1∑
t=0

cvtt (xt,ut) + ψ(xT)

s.t.


x0 ∈ X is given,
∀t ∈ [[0, T − 1]], xt+1 = f vtt (xt,ut)
∀t ∈ [[0, T − 1]], vt ∈ V ,



Homogeneization

Define the homogeneized costs and dynamics

f̃t
v
(x, y,u) =

(
At vbt
0 1

)(
x
y

)
+

(
Bt
0

)
u,

c̃tv(x, y,u) =
(
x
y

)T (
Ct 0
0 v2dt

)(
x
y

)
+ uTDtu,

Unconstrained 2-homogeneous MCP

min
(x,y)∈(X×R)T

(u,v)∈(U×V)T−1

T−1∑
t=0

c̃tvt(xt, yt,ut) + ψ̃(xT , yT)

s.t.
{
(x0, y0) ∈ X× R is given,

∀t ∈ [[0, T − 1]], (xt+1, yt+1) = f̃t
vt
(xt, yt,ut) .



Min-Plus selection function

We define the selection function ϕmin-plust as follows. For any
given Φ ⊂ Fmin-plust+1 and (x, y) ∈ X× R,

ϕmin-plust (Φ, x, y) = Bvt (ϕ)
for some (v, ϕ) ∈ argmin

(v,ϕ)∈V×Φ
Bvt (ϕ)︸ ︷︷ ︸

Best image of current approximation at trial point

(x, y)︸ ︷︷ ︸
trial point

.

Moreover, at time t = T , for any Φ ⊂ Fmin-plusT and (x, y) ∈ X×R,
we set

ϕmin-plusT (Φ, x, y) = ψ̃(x, y) = ψ(x).



Numerical results on a toy example: time spent
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Time spent for the first example (left) and the second example
when N = 50 (middle) and N = 200 (right).



Multistage Stochastic Convex Programming (MSCP)

MSCP can be solved by Dynamic Programming

min
(X,U)

E

[T−1∑
t=0

ct (Xt,Ut,Wt+1) + ψ (XT)
]

s.t. ∀t ∈ [[0, T − 1]]
Xt+1 = ft (Xt,Ut,Wt+1) , X0 given
σ (Ut) ⊂ σ (W0, . . . ,Wt+1)

where the noise process (Wt)t∈[[1,T]] is an independent
sequence of random variables of finite supports

B̃t (ϕ) (x,w) = minu ct (x,u,w) + ϕ (ft (x,u,w))

Bt (ϕ) (x) = E
[
B̃t (x,Wt+1)

]



Current optimal trajectories of Baucke-Downward-Zackeri

Input:
(
Vkt
)
t
and

(
Vkt
)
t
upper and lower current

approximations generated by TDP given a Multistage stochastic
convex optimization problem

We construct a deterministic trajectory
(
xkt
)
t∈[[0,T]], optimal (in

the sense introduced beforehand) for the current
approximations.

Forward in time

• Set xk0 := x0
• For each noise w, compute an optimal control ukt (w) to
apply at xkt for the lower current approximation Vkt

• Find a noise wkt+1 which maximises
argmaxw

(
Vkt+1 − Vkt+1

) (
ft
(
xkt ,ukt (w) ,w

))
• Set xkt+1 := ft

(
xkt ,ukt

(
wkt
)
,wkt

)
and iterate
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Using the optimal trajectories of lower approximations (SDDP)
as trial points for upper approximations (Min-Plus)

Denote by
(
xkt
)
t∈[[0,T]] the deterministic current optimal

trajectory of Baucke-Downward-Zackeri

Backward in time

• Compute a new upper basic function ϕ by evaluating a
selection function at Φk+1t+1 and xkt

• Add the new basic function ϕ to the current collection of
upper basic functions Φk+1t = Φ

k
t ∪ {ϕ}

• Compute a new lower basic function ϕ by evaluating a
selection function at Φk+1t+1 and xkt

• Add the new basic function ϕ to the current collection of
lower basic functions Φk+1t = Φkt ∪

{
ϕ
}
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