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Multistage Stochastic optimization Problems (MSP)

Multistage Stochastic optimization Problem

min
(X,U)

E

[T−1∑
t=0

cWt+1
t (Xt,Ut) + ψ (XT)

]
s.t. X0 = x0 given, ∀t ∈ [[0, T − 1]]

Xt+1 = fWt+1
t (Xt,Ut)

σ (Ut) ⊂ σ (X0,W1, . . . ,Wt+1) (Hazard-Decision)

Assumption (Finite support independent noises)
The sequence (Wt)t∈[[1,T]] is made of independent random
variables each with finite support
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Bellman operators and Dynamic Programming

MSP can be solved by Dynamic Programming

• Pointwise Bellman operator
for all w ∈ supp (Wt+1) and φ : X → R

Bwt (φ) : x ∈ X 7→ min
u

(
cwt (x,u) + φ

(
fwt (x,u)

))
∈ R

• (Average) Bellman operator

Bt (φ) : x ∈ X 7→ EWt+1

[
BWt+1
t (φ) (x)

]
∈ R

• Dynamic Programming Equations

VT = ψ and ∀t ∈ [[0, T − 1]], Vt = Bt (Vt+1)

• Vt is called the value function at time t ∈ [[0, T]]

• The value of MSP is equal to V0 (x0)

3/20



Bellman operators and Dynamic Programming

MSP can be solved by Dynamic Programming

• Pointwise Bellman operator
for all w ∈ supp (Wt+1) and φ : X → R

Bwt (φ) : x ∈ X 7→ min
u

(
cwt (x,u) + φ

(
fwt (x,u)

))
∈ R

• (Average) Bellman operator

Bt (φ) : x ∈ X 7→ EWt+1

[
BWt+1
t (φ) (x)

]
∈ R

• Dynamic Programming Equations

VT = ψ and ∀t ∈ [[0, T − 1]], Vt = Bt (Vt+1)

• Vt is called the value function at time t ∈ [[0, T]]

• The value of MSP is equal to V0 (x0)

3/20



Bellman operators and Dynamic Programming

MSP can be solved by Dynamic Programming

• Pointwise Bellman operator
for all w ∈ supp (Wt+1) and φ : X → R

Bwt (φ) : x ∈ X 7→ min
u

(
cwt (x,u) + φ

(
fwt (x,u)

))
∈ R

• (Average) Bellman operator

Bt (φ) : x ∈ X 7→ EWt+1

[
BWt+1
t (φ) (x)

]
∈ R

• Dynamic Programming Equations

VT = ψ and ∀t ∈ [[0, T − 1]], Vt = Bt (Vt+1)

• Vt is called the value function at time t ∈ [[0, T]]

• The value of MSP is equal to V0 (x0)

3/20



Bellman operators and Dynamic Programming

MSP can be solved by Dynamic Programming

• Pointwise Bellman operator
for all w ∈ supp (Wt+1) and φ : X → R

Bwt (φ) : x ∈ X 7→ min
u

(
cwt (x,u) + φ

(
fwt (x,u)

))
∈ R

• (Average) Bellman operator

Bt (φ) : x ∈ X 7→ EWt+1

[
BWt+1
t (φ) (x)

]
∈ R

• Dynamic Programming Equations

VT = ψ and ∀t ∈ [[0, T − 1]], Vt = Bt (Vt+1)

• Vt is called the value function at time t ∈ [[0, T]]
• The value of MSP is equal to V0 (x0)

3/20



Bellman operators and Dynamic Programming

MSP can be solved by Dynamic Programming

• Pointwise Bellman operator
for all w ∈ supp (Wt+1) and φ : X → R

Bwt (φ) : x ∈ X 7→ min
u

(
cwt (x,u) + φ

(
fwt (x,u)

))
∈ R

• (Average) Bellman operator

Bt (φ) : x ∈ X 7→ EWt+1

[
BWt+1
t (φ) (x)

]
∈ R

• Dynamic Programming Equations

VT = ψ and ∀t ∈ [[0, T − 1]], Vt = Bt (Vt+1)

• Vt is called the value function at time t ∈ [[0, T]]
• The value of MSP is equal to V0 (x0)

3/20



Min-plus & Max-plus approximations of Vt

Build an algorithm that simultaneously generates upper and
lower approximations of Vt as

min-plus linear and max-plus linear combinations of
basic functions

V
k
t

V k
t

Vt

For all t ∈ [[0, T]], construct
increasing sequences of basic
functions

(
Fkt
)
k∈N

and
(
Fkt
)
k∈N

Vkt = sup
φ∈Fkt

φ

Vkt = inf
φ∈Fkt

φ

4/20



Min-plus & Max-plus approximations of Vt

Build an algorithm that simultaneously generates upper and
lower approximations of Vt as

min-plus linear and max-plus linear combinations of
basic functions

• Generalizes the Min-plus algorithm for deterministic
control problems (McEneaney 2007, Qu 2014) giving upper
approximations as infima of quadratics

• and the Stochastic Dual Dynamic Programming (SDDP)
algorithm (Pereira and Pinto 1991, Shapiro 2011, ...) giving
lower approximations as suprema of affine cuts
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Lipschitz Multistage Stochastic optimization Problems

Assumption (Lipschitz dynamic, costs and constraints)
For every time t < T and w ∈ supp (Wt+1),

• dynamics fwt are Lipschitz continuous
• cost cwt are Lipschitz continuous on dom cwt
• constraint set-valued mapping Uwt is Lipschitz continuous
on Xt,

dH (Uwt (x1) ,Uwt (x2)) ≤ LUw
t
‖x1 − x2‖

Proposition (Lipschitz MSP implies regularity ofBt)

If V : X → R Lt+1-Lipschitz on Xt+1,
then Bt (V) is Lt-Lipschitz on Xt for some constant Lt > 0
which only depends on the data of the MSP problem and Lt+1.
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Constraint set-valued mapping

For each noise w ∈ supp (Wt+1), t ∈ [[0, T − 1]], define the
constraint set-valued mapping Uwt : X ⇒ U

Uwt (x) := {u ∈ U | cwt (x,u) < +∞ and fwt (x,u) ∈ Xt+1} .1

Assumption (Recourse assumption)
The set-valued mapping Uwt is non-empty compact valued

Proposition (Known domains of Vt)
Under the recourse assumption, dom Vt = Xt

1∀w ∈ supp (Wt+1) , Xwt := πX
(
dom cwt

)
, and Xt := ∩w∈supp(Wt+1)X

w
t .
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How to select new basic functions ?

Input: sequence (xt)t∈[[0,T]] of trial points, sequence (Ft)t∈[[0,T]] of
sets of basic functions

Output: sequence (φt)t∈[[0,T]] of basic functions
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Output: sequence (φt)t∈[[0,T]] of basic functions

Case t = T
Tightness Assumption (local property)

φT (xT) = VT (xT)

Validity Assumption (global property)

φT ≥ VT (Min-plus lin. combinations case)

φT ≤ VT (Max-plus lin. combinations case)
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Problem-child trajectory of Baucke and al. (2018)

Input: two sequences of functions V0, . . . , VT and V0, . . . , VT

Output: Problem-child trajectory, states (x∗0, . . . , x∗T).

Initial state x∗0 is given, then for t < T

1. For all w ∈ supp (Wt+1), compute optimal control at x∗t
uwt ∈ argmin

u∈U

(
cwt (x∗t ,u) + Vt+1

(
fwt (x∗t ,u)

))
2. Compute “the worst” noise
w∗ ∈ argmaxw∈Wt+1

(
Vt+1 − Vt+1

)(
fwt (x∗t ,uwt )

)
3. Set x∗t+1 = fw∗

t
(
x∗t ,uw

∗
t
)

Interpretation

Problem child trajectory = “Worst” optimal trajectory of
the lower approximations
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Tropical Dynamic Programming (TDP) algorithm

Algorithm 1 Tropical Dynamic Programming (TDP)
Input: Selection functions and (Wt)t∈[[1,T]] independent r.v. with

finite support.
Output: Sequence of sets

(
Fkt
)
k∈N

,
(
Fkt
)
k∈N

1: For every t ∈ [[0, T]], F0t := ∅ and F0t := ∅
2: for k ≥ 0 do
3: Forward. Compute Problem-child trajectory

(
xkt
)
t∈[[0,T]]

using Vkt = inf
φ∈Fkt

φ and Vkt = supφ∈Fkt
φ

4: Backward. Compute new basic functions
(
φt
)
t∈[[0,T]] and(

φt

)
t∈[[0,T]]

and update

Fk+1t := Fkt ∪
{
φt
}
and Fk+1t := Fkt ∪

{
φt

}
, t ∈ [[0, T]]

5: end for
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Tropical Dynamic Programming (TDP) algorithm
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Tropical Dynamic Programming (TDP) algorithm
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Convergence to limits V∗
t and V

∗
t

Under finite independent noises, Lipschitz data and recourse
assumptions we have

Existence of an approximating limit

The sequence of functions
(
Vkt

)
k∈N

(resp.
(
Vkt

)
k∈N

)
generated by TDP converges uniformly on every compact set
included in the domain of Vt to a function V∗t (resp. V

∗
t ).

Some features of TDP

• No need to discretize the state space
•
(
Vkt

)
k
and

(
Vkt

)
k
are monotonic

• V∗t and V
∗
t are close to Vt on “interesting points”, but may

be far from Vt elsewhere.
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Asymptotic convergence of TDP

Under finite independent noises, Lipschitz data and recourse
assumptions we have

Convergence of TDP [Akian, Chancelier, T., 2020]
Denote by

(
xkt
)
0≤t≤T the k-th Problem-child trajectory.

For every accumulation point x∗t of
(
xkt
)
k∈N, we have

Vkt
(
xkt
)
− Vkt

(
xkt
)
−→ 0
k→+∞

and V∗t (x∗t ) = Vt (x∗t ) = V∗t (x∗t )

This result generalizes the convergence of SDDP à la [Philpott
and al. (2013)] and [Baucke and al. (2018)] seen as a specific
instance of TDP for the linear-polyhedral framework
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Idea of the proof, details in [Akian, Chancelier, T., 2020]

•
(
Vkt

)
k
(resp.

(
Vkt

)
k
) converges uniformly to V∗t (resp. V

∗
t )

on the domain of Vt by Arzela-Ascoli theorem

• Exploiting monotonicity of the approximations and that
each operator Bwt is order preserving

0 ≤ Vk+1t

(
xkt
)
− Vk+1t

(
xkt
)

≤
∑

w∈supp(Wt+1)

P [Wt+1 = w]
[(
Vkt+1 − Vkt+1

)(
fwt

(
xkt ,ukt (w)

))]
• PC-trajectory is the “worst” optimal trajectory

0 ≤ Vk+1t

(
xkt
)
− Vk+1t

(
xkt
)
≤ Vkt+1

(
xkt+1

)
− Vkt+1

(
xkt+1

)
• Taking the limit in k

0 ≤ V∗t (x∗t )− V∗t (x∗t ) ≤ V∗t+1
(
x∗t+1

)
− V∗t+1

(
x∗t+1

)
• Conclude by backward recursion on t
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• PC-trajectory is the “worst” optimal trajectory

0 ≤ Vk+1t

(
xkt
)
− Vk+1t

(
xkt
)
≤ Vkt+1

(
xkt+1

)
− Vkt+1

(
xkt+1

)
• Taking the limit in k

0 ≤ V∗t (x∗t )− V∗t (x∗t ) ≤ V∗t+1
(
x∗t+1

)
− V∗t+1

(
x∗t+1

)
• Conclude by backward recursion on t 12/20
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Linear-polyhedral framework

Linear dynamics (x,u) 7→ fwt (x,u)

Polyhedral costs (x,u) 7→ cwt (x,u) (convex polyhedral epigraph)

Proposition (Linear-polyhedral MSP are Lipschitz MSP)
Linear-polyhedral MSP are Lipschitz MSP

Proof.
The constraint mapping Uwt has a convex polyhedral graph
thus (e.g. [Rockafellar-Wets, Variational Analysis]) is Lipschitz
with an explicit constant
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U-SDDP on a linear-polyhedral example
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V-SDDP on a linear-polyhedral example
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Complexity of TDP

• G. Lan2 obtained complexity of SDDP (and EDDP) in 2020
Precision of Tε archived after at most T(Dε + 1)N iterations
D diameter state spaces
N dimension state/control (decision) space

• Straightforward modifications of Lan’s proof yield the
same complexity result for TDP

• For TDP, overall complexity depends on the complexity of
computing basic functions

Selection mapping Computational difficulty
SDDP Card (Wt+1) LPs
U Card (Wt+1) · Card (F) QPs
V one LP

2Guanghui Lan, Complexity of Stochastic Dual Dynamic Programming, accepted for
publication in Mathematical Programming 16/20
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Conclusion

• Monotonic approximations
(
Vkt

)
k
and

(
Vkt

)
k
of Vt

• Min-plus linear or Max-plus linear combinations of basic
functions

• Tight and Valid basic functions
• Approximations refined along the Problem-child trajectory
without discretizing state space

• Gap between upper and lower approximation vanishes
along the Problem-child trajectory

• Generalizes [Philpott and al. (2013)] and [Baucke and al.
(2018)] for a variant of SDDP

• Additional results (deterministic case) in [Akian,
Chancelier, T. (2018)]
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Perspectives and ongoing works

• Allow approximations to only be monotonous at the trial
points (to do pruning)

• (Level) regularization of TDP
• Compute sharp(er) bounds of Lipschitz regularity of Bt

• Extensive numerical comparisons in higher dimensions
• More flexibility on the choice of the trial points : randomly
drawn and satisfy a sufficient condition to get
convergence. Already done in the deterministic case.

• Handle more complex noise structures
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