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Multistage Stochastic optimization Problems (MSP)

Multistage Stochastic optimization Problem

-1
(f)T(“U”) E Z ™ (Xe, Ue) + 9 (X)
’ t=0

st Xo = xo given,Vt € [0, T —1]

Xip1 = fth (Xt, Ut)
o (Ut) C o (Xo,Ws,...,W¢yq) (Hazard-Decision)

Assumption (Finite support independent noises)
The sequence (Wt),cp 1y is made of independent random
variables each with finite support
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Bellman operators and Dynamic Programming

MSP can be solved by Dynamic Programming
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Bellman operators and Dynamic Programming

MSP can be solved by Dynamic Programming

- Pointwise Bellman operator
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Bellman operators and Dynamic Programming

MSP can be solved by Dynamic Programming

- Pointwise Bellman operator
forall w € supp (Wey1) and ¢ : X — R
BY (9): x € X s min (' (x,u) + #(f* (x,u)) ) € R
- (Average) Bellman operator
Bt () : X € X — By, [Btwm (8) (x)} cR
- Dynamic Programming Equations

Vr =1 and Vt e I[O,T—ﬂ], Vt:%t(vt—H)

- Vi is called the value function at time t € [0, T]
- The value of MSP is equal to Vo (x)
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Min-plus & Max-plus approximations of V;

Build an algorithm that simultaneously generates upper and
lower approximations of V; as
min-plus linear and max-plus linear combinations of
basic functions

For all t € [0,T], construct
increasing sequences of basic

functions (E’;)k , and (Ff)
€

kReN
VE=sup ¢
deF!
Vi = inf &
BeFy
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Min-plus & Max-plus approximations of V;

Build an algorithm that simultaneously generates upper and
lower approximations of V; as
min-plus linear and max-plus linear combinations of
basic functions

- Generalizes the Min-plus algorithm for deterministic
control problems (McEneaney 2007, Qu 2014) giving upper
approximations as infima of quadratics

- and the Stochastic Dual Dynamic Programming (SDDP)
algorithm (Pereira and Pinto 1991, Shapiro 2011, ...) giving
lower approximations as suprema of affine cuts
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Lipschitz Multistage Stochastic optimization Problems

Assumption (Lipschitz dynamic, costs and constraints)
For every timet < T and w € supp (Wi1),

are Lipschitz continuous
are Lipschitz continuous on dom ¢}
is Lipschitz continuous

on X,
dy (U (x1) U (%)) < L[ — x|

Proposition (Lipschitz MSP implies regularity of 8;)

If ,

then for some constant Ly > 0
which only depends on the data of the MSP problem and L.
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Constraint set-valued mapping

For each noise w € supp (Wi41), t € [0, T — 1], define the
' - X=U

U’ (x):={uel]c(x,u) < +ooand f¥(x,u) € Xey1} .

Assumption (Recourse assumption)
The set-valued mapping U is non-empty compact valued

Proposition (Known domains of V;)
Under the recourse assumption, dom V; = X;

Ww € supp (Wip1), XY := mx (dom c}¥), and X; := NwesuppWe) Xt -
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2. Tropical Dynamic Programming (TDP)
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How to select new basic functions ?

Input: sequence (xt);cpo g Of trial points, sequence (Ft);cpo,rg OF
sets of basic functions

Output: sequence (¢t)cpo 7y OF basic functions
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How to select new basic functions ?

Input: sequence (x¢);cpo ry Of trial points, sequence (Ft);cpo,rg OF
sets of basic functions

Output: sequence (¢r);co,ry Of basic functions

Caset=T
Tightness Assumption (local property)

ot (xr) = Vr (x7)
Validity Assumption (global property)
o1 > Vr  (Min-plus lin. combinations case)

ér < Vr (Max-plus lin. combinations case)
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How to select new basic functions ?

Input: sequence (x¢);cpo ry Of trial points, sequence (Ft);cpo,rg OF
sets of basic functions

Output: sequence (¢r);co,ry Of basic functions

Caset<T
Tightness Assumption (local property)

bt () = Be (Vr,,) (Xt)

Validity Assumption (global property)
¢t > Bt (Vr,,)  (Min-plus lin. combinations case)

¢t < Bt (Vi)  (Max-plus lin. combinations case)
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Problem-child trajectory of Baucke and al. (2018)

Input: two sequences of functions V,,...,V; and Vo,...,Vr
Output: Problem-child trajectory, states (x3,. .., X7).

Initial state x; is given, then fort < T
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Initial state x; is given, then fort < T

1. For all w € supp (Wi+1), compute optimal control at x;

uf € arg min (¢t (¢, 0) + Ve (¥ (6. 0))
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Problem-child trajectory of Baucke and al. (2018)

Input: two sequences of functions V,,...,V; and Vo,...,Vr
Output: Problem-child trajectory, states (x3,. .., X7).
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Problem-child trajectory of Baucke and al. (2018)

Input: two sequences of functions V,,...,V; and Vo,...,Vr
Output: Problem-child trajectory, states (x3,. .., X7).
Initial state x; is given, then fort < T

1. For all w € supp (Wi+1), compute optimal control at x;

uf' & argmin (clf (¢, u) + Ve (7 0,0)) )
uel
2. Compute “the worst” noise
w* € arg maxyew,,, (Vear — Vera) (R (5, ut’))
3. Setxty, =f" (x,uf")

Interpretation

Problem child trajectory = “Worst” optimal trajectory of
the lower approximations 8/20




Tropical Dynamic Programming (TDP) algorithm

Algorithm 1 Tropical Dynamic Programming (TDP)

Input: Selection functions and (W), 7y independent rv. with
finite support.
Output: Sequence of sets (Ff)k v (Ef)k u
€ S
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Tropical Dynamic Programming (TDP) algorithm

Algorithm 2 Tropical Dynamic Programming (TDP)

Input: Selection functions and (W), 7y independent rv. with
finite support.
Output: Sequence of sets (Ff)k v (Ef)k u
€ S

1. Forevery t € [0,T], Fy := @ and F® := ¢
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Tropical Dynamic Programming (TDP) algorithm

Algorithm 3 Tropical Dynamic Programming (TDP)

Input: Selection functions and (W), 7y independent rv. with
finite support.
Output: Sequence of sets (Ff)k v (Ef)k u
€ S

1. Forevery t € [0,T], Fy := @ and F® := ¢
2: for k > 0do

3 Forward. Compute Problem-child trajectory (Xf)reno .

R —
using Vr = inf; i ¢ and Vi = supyepr ¢

5. end for
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Tropical Dynamic Programming (TDP) algorithm

Algorithm 4 Tropical Dynamic Programming (TDP)

Input: Selection functions and (W), 7y independent rv. with
finite support.
Output: Sequence of sets (Ff)k v (Ef)k u
€ S

1. Forevery t € [0,T], Fy := @ and F® := ¢
2: for k > 0do

3. Forward. Compute Problem-child trajectory (Xf)reno 1
k. -
using Vr = inf; i ¢ and Vi = supyepr ¢

4  Backward. Compute new basic functions (at)te[[o r and
@t)te[[oﬂ] and update
FEt = FF U {g} and F¥+1 = FrU {Qt}, te[0,T]
5. end for
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3. Convergence result of TDP
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Convergence to limits V; and V;

Under finite independent noises, Lipschitz data and recourse
assumptions we have

Existence of an approximating limit

k —k
<Mt>keN = (Vt>feeN)
generated by TDP on every compact set
included in the domain of V; Vi Vi)

Some features of TDP

10/20



Convergence to limits V; and V;

Under finite independent noises, Lipschitz data and recourse
assumptions we have

Existence of an approximating limit

k —k
<Mt>keN = (Vt>feeN)
generated by TDP on every compact set
included in the domain of V; Vi Vi)

Some features of TDP

10/20



Convergence to limits V; and V;

Under finite independent noises, Lipschitz data and recourse
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Convergence to limits V; and V;

Under finite independent noises, Lipschitz data and recourse
assumptions we have

Existence of an approximating limit

The sequence of functions (Mf)k N (resp. (Vf% N)
S S

generated by TDP converges uniformly on every compact set
included in the domain of V; to a function V¥ (resp. Vy).

Some features of TDP
- No need to discretize the state space
. (M’f)k and (V’;)k are monotonic
- V{and V;‘ are close to V; on “interesting points”, but may
be far from V; elsewhere.
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Asymptotic convergence of TDP

Under finite independent noises, Lipschitz data and recourse
assumptions we have

Convergence of TDP [Akian, Chancelier, T., 2020]

Denote by

For every accumulation point x; of (x¥), ., we have

ReN’

Ve (xE) - vE () — 0 and V() = Ve (x) = V5 ()

R—+o00

This a la [Philpott
and al. (2013)] and [Baucke and al. (2018)] seen as a specific
instance of TDP for the linear-polyhedral framework
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Idea of the proof, details in [Akian, Chancelier, T., 2020]

. (Mf)k (resp. (Vf)h) converges uniformly to V§ (resp. V;)
on the domain of V; by Arzela-Ascoli theorem
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Idea of the proof, details in [Akian, Chancelier, T., 2020]

. (Mf)k (resp. (Vf)h) converges uniformly to V§ (resp. V;)
on the domain of V; by Arzela-Ascoli theorem

- Exploiting monotonicity of the approximations and that
each operator B is order preserving

o< () 417 ()

< Z P[Weiq = w] [(me - Mf—H) (ftw (Xf’ uf (W)>)}

wesupp(Wei1)

- PC-trajectory is the “worst” optimal trajectory
TR (R k k Vil R k k
0< Vi (Xt> -Vt (Xt> < Vig <Xt+1> — Vi (Xt-H)
- Taking the limitin R
0 < Vi () = V5 () < Vi (1) — Vi (64)

- Conclude by backward recursion on t
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4. Numerical illustration in the linear-polyhedral framework
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Linear-polyhedral framework

(X7 U) = f’[W (X7 U)
(x,u) — ¢’ (x,u) (convex polyhedral epigraph)

Proposition (Linear-polyhedral MSP are Lipschitz MSP)
Linear-polyhedral MSP are Lipschitz MSP

Proof.

The constraint mapping U4;" has a convex polyhedral graph
thus (e.g. [Rockafellar-Wets, Variational Analysis]) is Lipschitz
with an explicit constant O
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U-SDDP on a linear-polyhedral example

;
;
g \/
2
- 6 E] 2 0 2 “ 6
N

14/20



V-SDDP on a linear-polyhedral example

era
eration = 1
\
\
\
\
teration =1
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Complexity of TDP

- G. Lan? obtained complexity of SDDP (and EDDP) in 2020
Precision of Te archived after at most T(2 4 1)V iterations
D diameter state spaces
N dimension state/control (decision) space

2Guanghui Lan, Complexity of Stochastic Dual Dynamic Programming, accepted for
publication in Mathematical Programming 16/20
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Complexity of TDP

- G. Lan? obtained complexity of SDDP (and EDDP) in 2020
Precision of Te archived after at most T(2 4 1)V iterations
D diameter state spaces
N dimension state/control (decision) space

- Straightforward modifications of Lan’s proof yield the
same complexity result for TDP

- For TDP, overall complexity depends on the complexity of
computing basic functions

Selection mapping | Computational difficulty
SDDP Card (Wy,1) LPs
u Card (Wi 1) - Card (F) QPs
V one LP

2Guanghui Lan, Complexity of Stochastic Dual Dynamic Programming, accepted for
publication in Mathematical Programming 16/20



Conclusion

-+ Monotonic approximations (Vf)fe and (Mf)k of V¢

17/20



Conclusion

-+ Monotonic approximations (Vf)fe and (Mf)k of V¢

- Min-plus linear or Max-plus linear combinations of basic
functions

17/20



Conclusion

-+ Monotonic approximations (Vf)k and (Mf)k of V¢

- Min-plus linear or Max-plus linear combinations of basic
functions

- Tight and Valid basic functions

17/20



Conclusion

-+ Monotonic approximations (Vf)k and (Mf)k of V¢

- Min-plus linear or Max-plus linear combinations of basic
functions

- Tight and Valid basic functions

- Approximations refined along the Problem-child trajectory
without discretizing state space

17/20



Conclusion

-+ Monotonic approximations (Vf)k and (Mf)k of V¢

- Min-plus linear or Max-plus linear combinations of basic
functions

- Tight and Valid basic functions

- Approximations refined along the Problem-child trajectory
without discretizing state space

- Gap between upper and lower approximation vanishes
along the Problem-child trajectory

17/20



Conclusion

-+ Monotonic approximations (Vf)k and (Mf)k of V¢

- Min-plus linear or Max-plus linear combinations of basic
functions

- Tight and Valid basic functions

- Approximations refined along the Problem-child trajectory
without discretizing state space

- Gap between upper and lower approximation vanishes
along the Problem-child trajectory

- Generalizes [Philpott and al. (2013)] and [Baucke and al.
(2018)] for a variant of SDDP

17/20



Conclusion

-+ Monotonic approximations (Vf)k and (Mf)k of V¢

- Min-plus linear or Max-plus linear combinations of basic
functions

- Tight and Valid basic functions

- Approximations refined along the Problem-child trajectory
without discretizing state space

- Gap between upper and lower approximation vanishes
along the Problem-child trajectory

- Generalizes [Philpott and al. (2013)] and [Baucke and al.
(2018)] for a variant of SDDP

- Additional results (deterministic case) in [Akian,
Chancelier, T. (2018)]
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Perspectives and ongoing works

- Allow approximations to only be monotonous at the trial
points (to do pruning)

- (Level) regularization of TDP
- Compute sharp(er) bounds of Lipschitz regularity of By
- Extensive numerical comparisons in higher dimensions

- More flexibility on the choice of the trial points : randomly
drawn and satisfy a sufficient condition to get
convergence. Already done in the deterministic case.

- Handle more complex noise structures
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